题目内容
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为252m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
【答案】(1)18m或14m;(2)花园面积的最大值是255平方米.
【解析】
(1)根据AB=x米可知BC=(32-x)米,再根据矩形的面积公式即可得出结论;
(2)根据P处有一棵树与墙CD、AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论.
解:(1)设AB=x米,可知BC=(32-x)米,根据题意得:x(32-x)=252.
解这个方程得:x1=18,x2=14,
答:x的长度18m或14m.
(2)设周围的矩形面积为S,
则S=x(32-x)=-(x-16)2+256.
∵在P处有一棵树与墙CD,AD的距离是17m和6米,
∴6≤x≤15.
∴当x=15时,S最大= -(15-16)2+256=255(平方米).
答:花园面积的最大值是255平方米.
【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组 | 频数 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?