题目内容
【题目】如图1,抛物线y = ax2+bx-3经过A、B、C三点,己知点A(-3,0)、C (1, 0).
(1)求此抛物线的解析式.
(2)点P是直线AB下方的抛物线上一动点(不与A、B重合),
①过点F作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求 出此时P点的坐标.
②如图2,连接AP.以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物 线对称轴上时,求出对应的P点的坐标.
【答案】(1)y = x2+2x﹣3;(2)①(﹣,),②(﹣-1,2)或(,)
【解析】
(1)直接用待定系数法求解即可;
(2)①由抛物线解析式y = x2+2x﹣3,令x=0,y=﹣3,求出点B(0,-3),设直线AB的解析式为y=kx+b,把A(﹣3,0)和B(0,﹣3)代入y =kx+b求出k=-1,b=-3,直线AB的解析式为y=﹣x﹣3,设E(x,﹣x﹣3),则PE=﹣(x+)2+,从而得当PE最大时,P点坐标为(﹣,);
②抛物线对称轴为直线x=﹣1,A(﹣3,0),正方形APMN的顶点落在抛物线对称轴上的情况有两种情况,i) 当点N在抛物线对称轴直线x=﹣1上;ii)当点M在抛物线对称轴直线x=﹣1;根据这两种情况,作出图形,找到线段之间的等量关系,解之即可..
(1)把A(﹣3,0)和C(1,0)代入y = ax2+bx﹣3得,
,解得,
∴抛物线解析式为y = x2+2x﹣3;
(2)设P(x,x2+2x﹣3),直线AB的解析式为y=kx+b,
①由抛物线解析式y = x2+2x﹣3,令x=0,y=﹣3,
∴B(0,﹣3),
把A(﹣3,0)和B(0,﹣3)代入y =kx+b得,
解得,
∴直线AB的解析式为y=﹣x﹣3,
∵PE⊥x轴,
∴E(x,﹣x﹣3),
∵P在直线AB下方,
∴PE=﹣x﹣3﹣( x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,
当x=﹣时,y= x2+2x﹣3=,
∴当PE最大时,P点坐标为(﹣,).
②抛物线对称轴为直线x=﹣1,A(﹣3,0),正方形APMN的顶点落在抛物线对称轴上的情况有两种:
i)当点N在抛物线对称轴直线x=﹣1上时,作PR⊥x轴于点R,设对称轴与x轴的交点为L,如图①,
∵四边形APMN为正方形,
∴AN=AP,∠PAR+∠RAN=90°,
∵∠PAR+∠APR=90°,
∴∠APR=∠RAN,
在△APR和△NAL中
∴△APR≌△NAL(AAS),
∴PR=AL,
∵AL=﹣1-(﹣3)=2,
∴PR=2,此时 x2+2x﹣3=2,解得x1=-1,x2=﹣-1,
∵P在直线AB下方,
∴x=﹣-1,
∴P(﹣-1,2);
ii)当点M在抛物线对称轴直线x=﹣1上时,如图②,过点P作PH⊥对称轴于点H、作AG⊥HP于点G,
∵四边形APMN为正方形,
∴PA=PM,∠APM=90°,
∴∠APG+∠MPH=90°,
∵∠APG+∠GAP=90°,
∴∠GAP=∠HPM,
在△APG和△PMH中
∴△APG≌△PMH(AAS),
∴AG=PH,PG=MH,
∴GH=PG+PH
∵P(x,x2+2x-3)
∴x+3+(-x2-2x+3)=2,解得x1=,x2=,
∵P在直线AB下方,
∴x=,
∴P(,)
终上所述,点P对应的坐标为(﹣-1,2)或(,).