题目内容
【题目】2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.
【答案】62
【解析】
设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.
设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,
依题意,得:5x+7×2y+10y=346,
∴x= ,
∵x,y均为非负整数,
∴346﹣24y为5的整数倍,
∴y的尾数为4或9,
∴ ,,,
∴x+y+2y=62或53或44.
∵62>53>44,
∴最多可以购买62件纪念品.
故答案为:62.
练习册系列答案
相关题目