题目内容

【题目】如图,以AB边为直径的O经过点P,C是O上一点,连结PC交AB于点E,且ACP=60°,PA=PD.

(1)试判断PD与O的位置关系,并说明理由;

(2)若点C是弧AB的中点,已知AB=4,求CECP的值.

【答案】(1)PD是O的切线;(2)8

【解析】

试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120°,然后计算出PAD和D的度数,进而可得OPD=90°,从而证明PD是O的切线;

(2)连结BC,首先求出CAB=ABC=APC=45°,然后可得AC长,再证明CAE∽△CPA,进而可得,然后可得CECP的值.

试题解析:(1)如图,PD是O的切线.

证明如下:

连结OP,∵∠ACP=60°,∴∠AOP=120°,OA=OP,∴∠OAP=OPA=30°,PA=PD,∴∠PAO=D=30°,∴∠OPD=90°,PD是O的切线.

(2)连结BC,AB是O的直径,∴∠ACB=90°,又C为弧AB的中点,∴∠CAB=ABC=APC=45°,AB=4,AC=Absin45°=∵∠C=C,CAB=APC,∴△CAE∽△CPA,CPCE=CA2=(2=8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网