2、在一幅6月22日光照图上,有甲、乙两地都位于北半球。太阳在同一时刻位于甲、乙上中天时测得甲地太阳高度角为60°,乙地太阳高度角为36°,甲乙两地在图上的球面距离是44.4厘米(不考虑地形因素),则该图的比例尺为(  )  A、1:2400000           B、图上一厘米代表实际距离30千米  C、六十万分之一           D、1:6000000 3、某点以东为西半球,以西为东半球,以北一年内有两次太阳直射现象,以南为温带地区,这点的地理以经纬度是(  )  A、(180 °,23°26 ′N)        B、(160°E,23°26 ′S)  C、(20°W,23°26 ′S)       D、(0°,23°26 ′N) 4、在甲乙两张图幅大小相同的地图上,某两地在地图上的距离分别为8厘米、4厘米,这说明(  )  A、甲图表示的实际地域范围比乙图广    B、进行工程建设选用乙图更为实用  C、甲图的比例尺比乙图小       D、甲图所表示的地理事物比乙图更详细 某飞行员驾机从A机场(30°N,120°E)起飞,为了经济省时,飞机必须沿最短航线飞往B机场(35°S,60°W)执行任务。据此回答5-6题

5、飞机的航向应为(   )

 A、一直向东南  B、一直向西北 C、先向北后向南  D、先向南后向北

6、最短航程为(   )

  A、175×111 Km   B、185×111 Km    C、65×111Km     D、155×111Km

例1.某厂2001年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润m与全年总投入N的大小关系是        (  )

A. m>N     B. m<N     C.m=N     D.无法确定

[分析]每月的利润组成一个等差数列{an},且公差d>0,每月的投资额组成一个等比数列{bn},且公比q>1。,且,比较的大小。

若直接求和,很难比较出其大小,但注意到等差数列的通项公式an=a1+(n-1)d是关于n的一次函数,其图象是一条直线上的一些点列。等比数列的通项公式bn=a1qn-1是关于n的指数函数,其图象是指数函数上的一些点列。

在同一坐标系中画出图象,直观地可以看出aibi   则,即m>N。

[点评]把一个原本是求和的问题,退化到各项的逐一比较大小,而一次函数、指数函数的图象又是每个学生所熟悉的。在对问题的化归过程中进一步挖掘了问题的内涵,通过对问题的反思、再加工后,使问题直观、形象,使解答更清新。

例2.如果,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,PA,BC的公垂线ED=h.求证三棱锥P-ABC的体积

分析:如视P为顶点,△ABC为底面,则无论是S△ABC以及高h都不好求.如果观察图形,换个角度看问题,创造条件去应用三棱锥体积公式,则可走出困境.

解:如图,连结EB,EC,由PA⊥BC,PA⊥ED,ED∩BC=E,可得PA⊥面ECD.这样,截面ECD将原三棱锥切割成两个分别以ECD为底面,以PE、AE为高的小三棱锥,而它们的底面积相等,高相加等于PE+AE=PA=l,所以

VP-ABC=VP-ECD+VA-ECD=S△ECD•AE+S△ECD•PE=S△ECD •PA=BC·ED·PA=.   评注:辅助截面ECD的添设使问题转化为已知问题迎刃而解.

例3.在的展开式中x的系数为( ).

(A)160       (B)240        (C)360      (D)800

分析与解:本题要求展开式中x的系数,而我们只学习过多项式乘法法则及二项展开式定理,因此,就要把对x系数的计算用上述两种思路进行转化:

思路1:直接运用多项式乘法法则和两个基本原理求解,则展开式是一个关于x的10次多项式, =(x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2),它的展开式中的一次项只能从5个括号中的一个中选取一次项3x并在其余四个括号中均选 择常数项2相乘得到,故为·(3x)··24=5×3×16x=240x,所以应选(B).

思路2 利用二项式定理把三项式乘幂转化为二项式定理再进行计算,∵x2+3x+2=x2+ (3x+2)=(x2+2)+3x=(x2+3x)+2=(x+1)(x+2)=(1+x)(2+x),∴这条思路下又有四种不同的化归与转化方法.①如利用x2+3x+2=x2+(3x+2)转化,可以发现只有(3x+2)5中会有x项,即(3x)·24=240x,故选(B);②如利用x2+3x+2= (x2+2)+3x进行转化,则只 (x2+2) 4·3x中含有x一次项,即·3x·C44·24=240x;③如利用x2+3x+2=(x2+3x)+2进行转化,就只有·(x2+3x)·24中会有x项,即240x;④如选择x2+3x+2=(1+x)(2+x)进行转化,=×展开式中的一次项x只能由(1+x)5中的一次项乘以(2+x)5展开式中的常数项加上(2+x)5展开式中的一次项乘以(1+x)5展开式中的常数项后得到,即为25+•24•x••15=160x+80x=240x,故选(B). 

评注:化归与转化的意识帮我们把未知转化为已知。

例4.若不等式对一切均成立,试求实数的取值范围。

解:   

,则要使它对均有,只要有

    

点评:在有几个变量的问题中,常常有一个变元处于主要地位,我们称之为主元,由于思维定势的影响,在解决这类问题时,我们总是紧紧抓住主元不放,这在很多情况下是正确的。但在某些特定条件下,此路往往不通,这时若能变更主元,转移变元在问题中的地位,就能使问题迎刃而解。本题中,若视x为主元来处理,既繁且易出错,实行主元的转化,使问题变成关于p的一次不等式,使问题实现了从高维向低维转化,解题简单易行。

 0  435027  435035  435041  435045  435051  435053  435057  435063  435065  435071  435077  435081  435083  435087  435093  435095  435101  435105  435107  435111  435113  435117  435119  435121  435122  435123  435125  435126  435127  435129  435131  435135  435137  435141  435143  435147  435153  435155  435161  435165  435167  435171  435177  435183  435185  435191  435195  435197  435203  435207  435213  435221  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网