7.若函数
的导函数在区间
上是增函数,
则函数![]()
在区间
上的图象可能是[ A ]
|
A . B. C. D.
解: 因为函数
的导函数
在区间
上是增函数,即在区间
上
各点处的斜率
是递增的,由图易知选A. 注意C中
为常数噢.
21.本小题主要考察函数、函数的导数和不等式等基础知识,考察综合运用数学知识进行推理论证的能力和份额类讨论的思想(满分14分)
(I)解:
,由
在
处有极值![]()
可得![]()
解得
或![]()
若
,则
,此时
没有极值;
若
,则![]()
当
变化时,
,
的变化情况如下表:
|
|
|
|
|
1 |
|
|
|
|
0 |
+ |
0 |
|
|
|
|
极小值 |
|
极大值 |
|
当
时,
有极大值
,故
,
即为所求。
(Ⅱ)证法1:![]()
当
时,函数
的对称轴
位于区间
之外。
在
上的最值在两端点处取得
故
应是
和
中较大的一个
即![]()
证法2(反证法):因为
,所以函数
的对称轴
位于区间
之外,
在
上的最值在两端点处取得。
故
应是
和
中较大的一个
假设
,则
![]()
将上述两式相加得:
,导致矛盾,![]()
(Ⅲ)解法1:![]()
(1)当
时,由(Ⅱ)可知
;
(2)当
时,函数
)的对称轴
位于区间
内,
![]()
此时![]()
由
有![]()
①若
则
,
于是![]()
②若
,则![]()
![]()
于是![]()
综上,对任意的
、
都有![]()
而当
时,
在区间
上的最大值![]()
故
对任意的
、
恒成立的
的最大值为
。
解法2:![]()
(1)当
时,由(Ⅱ)可知
;
![]()
(2)当
时,函数
的对称轴
位于区间
内,
此时![]()
![]()
,即![]()
下同解法1