29.已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值,
(1)求a,b的值与函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b,
由f′(-)=-a+b=0,f′(1)=3+2a+b=0得a=-,b=-2,
f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
|
x |
(-∞,-) |
- |
(-,1) |
1 |
(1,+∞) |
|
f′(x) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
|
极大值 |
|
极小值 |
|
所以函数f(x)的递增区间是(-∞,-)与(1,+∞),递减区间(-,1);
(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(-)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值,要使f(x)<c2,x∈[-1,2]恒成立,则只需要c2>f(2)=2+c,得c<-1,或c>2.