24. Last night Li Ping watched the football match at home when he ________ his homework.
A. need have done B. must haven done
C. should have done D. could have worked
23. -Why did you talk to the teacher after class?
- I don’t understand _______ during the lecture.
A. the problem did she tell us B. how did she say
C. that she was talking about D. what she was teaching
22. He made little progress _______ his parents felt disappointed.
A. such ; that B. so ; that C. such a ; that D. so ; as
第一节 语法和词汇知识(共15小题;每小题1分,满分15分)
从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
21. I am so busy at the moment that I will not _______ your discussion.
A. join B. join in C. take part D. attend
15.
一条光线经过P(2,3)点,射在直线l:x+y+1=0上,反射后穿过Q(1,1).
(1)求光线的入射方程;
(2)求这条光线从P到Q的长度.
解:(1)设点Q ′(x′,y′)为Q关于直线l的对称点且QQ′交l于M点,∵kl=-1,∴kQQ′=1.
∴QQ′所在直线方程为y-1=1·(x-1)即x-y=0.
由
解得l与QQ′的交点M的坐标为(-,-).
又∵M为QQ′的中点,
14.已知A(0,3)、B(-1,0)、C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列).
解:
设所求点D的坐标为(x,y),如右图所示,由于kAB=3,kBC=0,
∴kAB·kBC=0≠-1,
即AB与BC不垂直,故AB、BC都不可作为直角梯形的直角边.
(1)若CD是直角梯形的直角边,则BC⊥CD,AD⊥CD,
∵kBC=0,∴CD的斜率不存在,从而有x=3,
又kAD=kBC,∴=0,即y=3.
此时AB与CD不平行.
故所求点D的坐标为(3,3).
(2)若AD是直角梯形的直角边,
则AD⊥AB,AD⊥CD,kAD=,kCD=.
由于AD⊥AB,∴·3=-1.
又AB∥CD,∴=3.
解上述两式可得,此时AD与BC不平行.
故所求点D的坐标为(,),
综上可知,使ABCD为直角梯形的点D的坐标可以为
(3,3)或(,).
13.已知直线l经过点(1,0),且被两平行直线3x+y-6=0和3x+y+3=0所截得的线段长为9,求直线l的方程.
解:设过点(1,0)的直线l与两平行直线分别交于A、B两点,则|AB|=9.
作AC垂直于两平行直线于A、C两点,
则|AC|==,
|BC|===.
设AB与两平行直线的夹角为θ,则tanθ==.
设直线l的斜率为k,
由||=,得k=-,
所求直线的方程为4x+3y-4=0.
当斜率k不存在时,x=1也满足题设条件.
故直线l的方程是4x+3y-4=0或x=1.
12.直线l经过点P(-2,1),且点A(-1,-2)到l的距离等于1,求直线l的方程.
解:(1)若l的斜率不存在,则l的方程为x=-2,
此时点A到l的距离为1,符合题意.
(2)若l的斜率存在,设l的方程:y=k(x+2)+1,
即kx-y+2k+1=0.
则点A到直线l的距离d==1,
即|k+3|=,解得k=-,
故l的方程为y=-(x+2)+1,即4x+3y+5=0.
综上所述,直线l的方程为x=-2或4x+3y+5=0.