3.(湖北卷19)(本小题满分13分)

如图,在以点为圆心,为直径的半圆中,是半圆弧上一点,

,曲线是满足为定值的动点的轨迹,且曲线过点.

(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;

(Ⅱ)设过点的直线l与曲线相交于不同的两点.

若△的面积不小于,求直线斜率的取值范围.

本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)

(Ⅰ)解法1:以O为原点,ABOD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得

MA|-|MB|=|PA|-|PB|=<|AB|=4.

∴曲线C是以原点为中心,AB为焦点的双曲线.

设实平轴长为a,虚半轴长为b,半焦距为c

c=2,2a=2,∴a2=2,b2=c2-a2=2.

∴曲线C的方程为.

解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<

AB|=4.

∴曲线C是以原点为中心,AB为焦点的双曲线.

设双曲线的方程为>0,b>0).

则由解得a2=b2=2,

∴曲线C的方程为

(Ⅱ)解法1:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.

∵直线l与双曲线C相交于不同的两点EF

 

k∈(-,-1)∪(-1,1)∪(1,).

E(xy),F(x2,y2),则由①式得x1+x2=,于是

EF|=

而原点O到直线l的距离d

S△DEF=

若△OEF面积不小于2,即SOEF,则有

     ③

综合②、③知,直线l的斜率的取值范围为[-,-1]∪(1-,1) ∪(1, ).

解法2:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理,

得(1-k2)x2-4kx-6=0.

∵直线l与双曲线C相交于不同的两点EF

 

k∈(-,-1)∪(-1,1)∪(1,).

E(x1,y1),F(x2,y2),则由①式得

x1-x2|=      ③

EF在同一去上时(如图1所示),

SOEF

EF在不同支上时(如图2所示).

SODE=

综上得SOEF于是

由|OD|=2及③式,得SOEF=

若△OEF面积不小于2

    ④

综合②、④知,直线l的斜率的取值范围为[-,-1]∪(-1,1)∪(1,).

 0  396558  396566  396572  396576  396582  396584  396588  396594  396596  396602  396608  396612  396614  396618  396624  396626  396632  396636  396638  396642  396644  396648  396650  396652  396653  396654  396656  396657  396658  396660  396662  396666  396668  396672  396674  396678  396684  396686  396692  396696  396698  396702  396708  396714  396716  396722  396726  396728  396734  396738  396744  396752  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网