ÌâÄ¿ÄÚÈÝ

3£®ÈçͼËùʾ£¬ABCDΪ±ß³¤Îª2aµÄÕý·½ÐΣ¬OΪÕý·½ÐÎÖÐÐÄ£¬Õý·½ÐÎÇøÓò×óؼÓÒÁ½¶Ô³Æ²¿·Ö·Ö±ð´æÔÚ·½Ïò´¹Ö±ABCDÆ½ÃæÏòÀïºÍÏòÍâµÄÔÈÇ¿´Å³¡£®Ò»¸öÖÊÁ¿Îª|mؼµçºÉÁ¿ÎªqµÄ´øÕýµçÁ£×Ó´ÓBµã´¦ÒÔËÙ¶Èv´¹Ö±´Å³¡·½ÏòÉäÈë×ó²à´Å³¡ÇøÓò£¬ËÙ¶È·½ÏòÓëBC±ß¼Ð½ÇΪ15¡ã£¬Á£×ÓÇ¡ºÃ¾­¹ýOµã£®ÒÑÖªcos15¡ã=$\frac{\sqrt{6+\sqrt{2}}}{4}$£¬Á£×ÓÖØÁ¦²»¼Æ£®
£¨1£©Çó×ó²à´Å³¡µÄ´Å¸ÐӦǿ¶È´óС£»
£¨2£©ÈôÁ£×Ó´ÓCD±ßÉä³ö£¬ÇóÓÒ²à´Å³¡µÄ´Å¸ÐӦǿ´ó´óСµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Á£×Ó´ÓBµãÉäÈë×ó²à´Å³¡£¬Ôڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬»­³öÔ˶¯¹ì¼££¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó³ö°ë¾¶£¬¼´¿ÉÇó³ö×ó²à´Å³¡µÄ´Å¸ÐӦǿ¶È´óС£»
£¨2£©ÓÒ²à´Å³¡´Å¸ÐӦǿ¶È´óС${B}_{2}^{\;}={B}_{1}^{\;}$ʱ£¬Á£×Ó´ÓDµãÉä³ö£¬¶ÔÓ¦µÄ´Å¸ÐӦǿ¶È×îС£»µ±Ô˶¯¹ì¼£ÓëCD±ßÏàÇÐʱ£¬´Å¸ÐӦǿ¶È×î´ó£¬Óɼ¸ºÎ¹ØÏµÇó³ö¹ì¼£°ë¾¶£¬¸ù¾Ý°ë¾¶¹«Ê½Çó³ö×î´ó´Å¸ÐӦǿ¶È£¬¼´¿ÉÇó³ö´Å¸ÐӦǿ¶ÈµÄ·¶Î§£»

½â´ð ½â£º£¨1£©Á£×Ó´ÓBµãÉäÈë×ó²à´Å³¡£¬Ô˶¯¹ì¼£Èçͼ1Ëùʾ£¬

$¡÷B{O}_{1}^{\;}O$ΪµÈ±ßÈý½ÇÐΣ¬Óɼ¸ºÎ¹ØÏµ¿ÉµÃ¹ì¼£°ë¾¶Îª£º${r}_{1}^{\;}=\sqrt{2}a$
Á£×ÓÔÚ×ó²à´Å³¡ÖÐÔ˶¯£¬ÓУº$qv{B}_{1}^{\;}=m\frac{{v}_{\;}^{2}}{{r}_{1}^{\;}}$
µÃ£º${B}_{1}^{\;}=\frac{\sqrt{2}mv}{2qa}$
£¨2£©µ±ÓÒ²à´Å³¡´Å¸ÐӦǿ¶È´óС${B}_{2}^{\;}={B}_{1}^{\;}$ʱ£¬Á£×Ó´ÓDµãÉä³ö£¬¶¯¹ì¼£Èçͼ2Ëùʾ£¬ÕâÊÇÁ£×Ó´ÓCD±ßÉä³öµÄ×îС´Å¸ÐӦǿ¶È

µ±´Å¸ÐӦǿ¶ÈÔö´óʱ£¬Á£×ÓÔÚÓÒ²à´Å³¡ÖÐÔ˶¯µÄ¹ì¼£°ë¾¶¼õС£¬µ±Ô˶¯¹ì¼£ÓëCD±ßÏàÇÐʱ£¬´Å¸ÐӦǿ¶È×î´ó£¬¹ì¼£Èçͼ3Ëùʾ£»

Óɼ¸ºÎ¹ØÏµ¿ÉÖª${r}_{2}^{\;}+{r}_{2}^{\;}cos15¡ã=a$
µÃ${r}_{2}^{\;}=\frac{4a}{\sqrt{6}+\sqrt{2}+4}$
Á£×ÓÔÚÓÒ²à´Å³¡ÖÐÔ˶¯£¬ÓÐ$qv{B}_{2m}^{\;}=m\frac{{v}_{\;}^{2}}{{r}_{2}^{\;}}$
µÃ${B}_{2m}^{\;}=\frac{£¨\sqrt{6}+\sqrt{2}+4£©mv}{4qa}$
ÈôÁ£×Ó´ÓCD±ßÉä³ö£¬ÓÒ²à´Å³¡´Å¸ÐӦǿ¶È´óСµÄ·¶Î§Îª
$\frac{\sqrt{2}mv}{2qa}¡Ü{B}_{2}^{\;}¡Ü\frac{£¨\sqrt{6}+\sqrt{2}+4£©mv}{4qa}$
´ð£º£¨1£©×ó²à´Å³¡µÄ´Å¸ÐӦǿ¶È´óС$\frac{\sqrt{2}mv}{2qa}$£»
£¨2£©ÈôÁ£×Ó´ÓCD±ßÉä³ö£¬ÓÒ²à´Å³¡µÄ´Å¸ÐӦǿ´ó´óСµÄȡֵ·¶Î§$\frac{\sqrt{2}mv}{2qa}¡Ü{B}_{2}^{\;}¡Ü\frac{£¨\sqrt{6}+\sqrt{2}+4£©mv}{4qa}$

µãÆÀ ´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÀàÐÍ£¬È·¶¨ÏòÐÄÁ¦À´Ô´£¬»­³ö¹ì¼££¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÊǹßÓõĽâÌâ˼·£®Æ½Ê±Òª¼ÓǿѵÁ·£¬²ÅÄÜÔËÓÃ×ÔÈ磮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø