ÌâÄ¿ÄÚÈÝ
14£®£¨1£©¸Ë×ÔÓÉÏÂÂäÖÁMN´¦Ê±ËÙ¶È´óСv£»
£¨2£©¸Ë´Ó½øÈë´Å³¡¿ªÊ¼ÊܱäÁ¦F×÷Óã¬ÊúÖ±ÏòÏÂ×öÔÈËÙÖ±ÏßÔ˶¯£¬Çó£ºÔÚϽµ¸ß¶È2d¹ý³ÌÖУ¬±äÁ¦FËù×öµÄ¹¦£®
·ÖÎö £¨1£©¸Ë×ö×ÔÓÉÂäÌåÔ˶¯£¬¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹ØÏµ¹«Ê½ÁÐʽÇó½â£»
£¨2£©¸Ë×öÇиî´Å¸ÐÏßÔ˶¯£¬²úÉúÕýÏÒʽ½»Á÷µç£¬¸ù¾ÝÇиʽµÃµ½¸ÐÓ¦µç¶¯ÊƵÄ˲ʱֵ£¬Çó½âÓÐЧֵ£»È»ºó¶ÔÔڴų¡ÖÐϽµ2dµÄ¹ý³ÌÔËÓö¯Äܶ¨ÀíÁÐʽÇó½â±äÁ¦×öµÄ¹¦£®
½â´ð ½â£º£¨1£©¸Ë×ÔÓÉÏÂÂäL¹ý³Ì£¬¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½£¬ÓУºv2=2gh£¬
½âµÃ£ºv=$\sqrt{2gh}$£»
£¨2£©¸ËÇиî´Å¸ÐÏß²úÉúµÄ˲ʱµç¶¯ÊÆÎª£ºe=BLv=B0sin£¨$\frac{¦Ð}{d}$y£©Lv=B0L$\sqrt{2gh}$sin£¨$\frac{¦Ð}{d}$y£©£¬
ÊÇÕýÏÒʽ½»Á÷µç£¬¹Ê¸ÐÓ¦µç¶¯ÊƵÄÓÐЧֵΪ£ºE=$\frac{{E}_{m}}{\sqrt{2}}$=B0L$\sqrt{gH}$£»
¸ù¾Ý¶¯Äܶ¨Àí£¬ÔÚϽµ¸ß¶È2d¹ý³ÌÖУ¬ÓУºmg£¨2d£©-$\frac{{E}^{2}}{R+r}$•$\frac{2d}{{v}_{\;}}$+WF=0£»
½âµÃ£ºWF=$\frac{{2dB_0^2{L^2}\sqrt{gH}}}{R+r}-2mgd$£»
´ð£º£¨1£©¸Ë×ÔÓÉÏÂÂäÖÁMN´¦Ê±ËÙ¶È´óСvΪ$\sqrt{2gh}$£»
£¨2£©¸Ë´Ó½øÈë´Å³¡¿ªÊ¼ÊܱäÁ¦F×÷Óã¬ÊúÖ±ÏòÏÂ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚϽµ¸ß¶È2d¹ý³ÌÖУ¬±äÁ¦FËù×öµÄ¹¦Îª$\frac{{2dB_0^2{L^2}\sqrt{gH}}}{R+r}-2mgd$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·¸ËÖвúÉúµÄÊÇÕýÏÒʽ½»Á÷µç£¬ÔÚ¼ÆËãµç¹¦Ê±Òª²ÉÓÃÓÐЧֵ£¬×îºó¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇó½â¼´¿É£®
| A£® | ijͬѧÓÃ16sÅÜÍê100 m | |
| B£® | ÖÐÑëµçÊǪ́ÐÂÎÅ30·Ö´Ó12£º30¿ª²¥ | |
| C£® | סУÉúÔçÉÏ6£º20Æð´² | |
| D£® | ¿ªÍùÍòÖݵĿͳµÓÚ07£º30´ÓÎ×ɽ´äÆÁ³µÕ¾³ö·¢ |
| A£® | ÏßȦÖвúÉúµÄ½¹¶úÈÈQ=$\frac{{B}^{2}{L}_{2}^{2}{L}_{1}v}{R}$ | B£® | ÀÁ¦µÄ´óСΪF=$\frac{{B}^{2}{L}_{1}^{2}{v}^{2}}{R}$ | ||
| C£® | ÀÁ¦µÄ¹¦ÂÊΪP=$\frac{{B}^{2}{L}_{1}^{2}{v}^{2}}{R}$ | D£® | ÀÁ¦×öµÄ¹¦ÎªW=$\frac{{B}^{2}{L}_{2}^{2}{L}_{1}v}{R}$ |
| A£® | ´¹Ö±ÓÚ¸ËбÏòÉÏ | B£® | ÊúÖ±ÏòÉÏ | C£® | ˮƽÏòÓÒ | D£® | ´¹Ö±ÓÚ¸ËбÏòÏ |
| A£® | 1sÄÚ»ØÂ·ÖвúÉúµÄ½¹¶úÈÈΪ2.54J | B£® | 1sÄÚ»ØÂ·ÖвúÉúµÄ½¹¶úÈÈΪ0.64J | ||
| C£® | 1sÄÚ»ØÂ·ÖÐµç¶¯ÊÆÎª1.6V | D£® | 1sÄ©ab°ôËùÊܴų¡Á¦Îª1.28V |
| A£® | ´Ót=0ʱ¿ÌÊͷŵç×Ó£¬µç×ÓÔÚÁ½°å¼äÍù¸´Ô˶¯£¬Ò»¶¨´òµ½ÓÒ¼«°åÉÏ | |
| B£® | ´Ót=$\frac{T}{4}$ʱ¿ÌÊͷŵç×Ó£¬µç×ÓÔÚÁ½°å¼äÍù¸´Ô˶¯£¬Ò»¶¨´òµ½ÓÒ¼«°åÉÏ | |
| C£® | ´Ót=$\frac{T}{8}$ʱ¿ÌÊͷŵç×Ó£¬µç×ÓÔÚÁ½°å¼äÍù¸´Ô˶¯£¬Ò»¶¨´òµ½ÓÒ¼«°åÉÏ | |
| D£® | ´Ót=$\frac{3T}{8}$ʱ¿ÌÊͷŵç×Ó£¬µç×ÓÔÚÁ½°å¼äÍù¸´Ô˶¯£¬¿ÉÄÜ´òµ½ÓÒ¼«°åÉÏ |