ÌâÄ¿ÄÚÈÝ
2£®ÎÒ¹úÑÐÖÆ²¢³É¹¦·¢ÉäÁË¡°æÏ¶ð¶þºÅ¡±Ì½ÔÂÎÀÐÇ£®ÈôÎÀÐÇÔÚ¾àÔÂÇò±íÃæ¸ß¶ÈΪhµÄ¹ìµÀÉÏÒÔËÙ¶Èv×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÔÂÇòµÄ°ë¾¶ÎªR£¬Ôò£¨¡¡¡¡£©| A£® | ÎÀÐÇÔËÐÐʱµÄÏòÐļÓËÙ¶ÈΪ$\frac{v^2}{R+h}$ | |
| B£® | ÎÀÐÇÔËÐÐʱµÄ½ÇËÙ¶ÈΪ$\frac{v}{R+h}$ | |
| C£® | ÔÂÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{{{v^2}{{£¨R+h£©}^{\;}}}}{{{R^{\;}}}}$ | |
| D£® | ÎÀÐÇÈÆÔÂÇò±íÃæ·ÉÐеÄËÙ¶ÈΪ$v\sqrt{\frac{R+h}{R}}$ |
·ÖÎö £¨1£©ÎïÌåÔÚÐÇÇòÉÏ»òÔÚÐÇÇò¸½½ü£¨²»×öÔ²ÖÜÔ˶¯£©ÀûÓÃÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦Çó½â£»È磺Çó½âÐÇÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶È£®
£¨2£©ÎïÌåÎ§ÈÆÐÇÇò×öÔ²ÖÜÔ˶¯£¬ÀûÓÃÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦Çó½â£®È磺Çó½âÏòÐļÓËÙ¶È£¬ÏßËÙ¶È£¬½ÇËÙ¶È£¬ÖÜÆÚ£¬µÚÒ»ÓîÖæËٶȵȣ®
½â´ð ½â£ºA¡¢ÎÀÐÇÔËÐÐʱ¹ìµÀ°ë¾¶Îªr=R+h£¬ÏòÐļÓËÙ¶ÈΪ£ºa=$\frac{{v}^{2}}{r}$=$\frac{{v}^{2}}{R+h}$£»¹ÊAÕýÈ·£»
B¡¢ÎÀÐÇÔËÐÐʱ¹ìµÀ°ë¾¶Îªr=R+h£¬½ÇËÙ¶È£º¦Ø=$\frac{v}{r}=\frac{v}{R+h}$£»¹ÊBÕýÈ·£»
C¡¢¶ÔÓÚ½üÔÂÎÀÐÇ£¬ÓУºG$\frac{Mm}{{R}^{2}}=mg$£»
¶ÔÓÚ̽²âÎÀÐÇ£¬ÓУºG$\frac{Mm}{£¨R+h£©^{2}}$=m$\frac{{v}^{2}}{R+h}$£»
ÁªÁ¢½âµÃ£ºg=$\frac{{v}^{2}£¨R+h£©}{{R}^{2}}$£»¹ÊC´íÎó£»
D¡¢¶ÔÓÚ½üÔÂÎÀÐÇ£¬ÓУºmg=m$\frac{{v}_{1}^{2}}{R}$£»
½âµÃ£ºv1=$\sqrt{gR}$=$v\sqrt{\frac{R+h}{R}}$£»¹ÊDÕýÈ·£»
¹ÊÑ¡£ºABD£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÒÔ¼°ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÔËÓÃÍòÓÐÒýÁ¦¶¨ÂɺÍÔ²ÖÜÔ˶¯¹æÂɽáºÏÑо¿£®
| A£® | ÎÞÂÛÕý¸º£¬Á£×Ó×ÜÊÇ×öÖ±ÏßÔ˶¯ | |
| B£® | ÎÞÂÛÕý¸º£¬Á£×ӵĵçÊÆÄÜ×ÜÊÇÏȱä´ó | |
| C£® | ÎÞÂÛÕý¸º£¬Á£×ӵĵçÊÆÄÜ×ÜÊÇÏȱäС | |
| D£® | Á£×ӵĵçÊÆÄܵı仯ÓëÁ£×ÓËù´øµçµÄµçÐÔÓÐ¹Ø |
| A£® | ÖʵãPµÄÕñ¶¯ÖÜÆÚΪT£¬ËٶȵÄ×î´óֵΪv | |
| B£® | Èôijʱ¿ÌÖʵãPµÄËÙ¶È·½ÏòÑØyÖḺ·½Ïò£¬Ôò¸Ãʱ¿Ì²¨Ô´ËÙ¶È·½ÏòÑØyÖáÕý·½Ïò | |
| C£® | ÖʵãP¿ªÊ¼Õñ¶¯µÄ·½ÏòÑØyÖáÕý·½Ïò | |
| D£® | Èôijʱ¿Ì²¨Ô´ÔÚÆ½ºâλÖã¬ÔòÖʵãPÒ»¶¨ÔÚ²¨¹È |