ÌâÄ¿ÄÚÈÝ
20£®s2£®Çó´Ó»¬¿ém»¬ÉÏ´«ËÍ´øµ½·µ»ØN¶Ë¹ý³ÌÖвúÉúµÄÈÈÁ¿Q£®
·ÖÎö ÎïÌ廬ÉÏ´«ËÍ´øºó£¬ÏÈÏòÓÒ¼õËÙºóÏò×ó¼ÓËÙ£¬¼ÓËÙ¶È´óСa=¦Ìg£¬¸ù¾ÝÎ»ÒÆ¹«Ê½ÁÐʽÇó½âÏà¶Ô·³Ì£¬¸ù¾ÝQ=f•¡÷SÏà¶ÔÇó½âÈÈÁ¿£®
½â´ð ½â£º»¬¿éÏòÓÒÔȼõËÙÔ˶¯£¬Ö±µ½ËٶȼõСµ½Á㣬¾Àúʱ¼ä£º
t1=$\frac{{v}_{0}}{¦Ìg}$=$\frac{4}{0.2¡Á10}$=2s¡¡
»¬¹ýÎ»ÒÆ£º
x1=$\frac{{v}_{0}}{2}$•t1=$\frac{4}{2}¡Á2$=4m
´«ËÍ´øÏò×óÒÆ¶¯Î»ÒÆ£º
x1'=vt1=2¡Á2=4m
´Ë¹ý³ÌÖÐĦ²Á²úÉúµÄÈÈÁ¿£º
Q1=¦Ìmg£¨x1+x1'£©=0.2¡Á1¡Á10¡Á£¨4+4£©=16J¡¡
´ËºóBÏò×ó×öÔȼÓËÙÔ˶¯£¬Ö±µ½ËÙ¶È´ïµ½2m/s£¬¾Àúʱ¼ä£º
t2=$\frac{v}{¦Ìg}$=$\frac{2}{0.2¡Á10}$=1s¡¡
´Ë¹ý³ÌÖÐĦ²Á²úÉúµÄÈÈÁ¿£º
Q2=¦Ìmg£¨vt2-$\frac{v}{2}$•t2£©=0.2¡Á1¡Á10¡Á£¨2¡Á1-$\frac{2}{2}$¡Á1£©=2J
ËùÒÔQ=Q1+Q2=16+2=18J
´ð£º´Ó»¬¿ém»¬ÉÏ´«ËÍ´øµ½·µ»ØN¶Ë¹ý³ÌÖвúÉúµÄÈÈÁ¿QΪ18J£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·»¬¿éµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£¬È»ºó¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½âÏà¶ÔÎ»ÒÆ£¬¼ÇסĦ²ÁÉúÈȵĹ«Ê½Q=f•¡÷SÏà¶Ô£®
| A£® | tcʱ¿Ì»ð¼ýÀëµØÃæ×î¸ß | |
| B£® | ÔÚ0¡«tb¶Î»ð¼ýÊÇÉÏÉýµÄ£¬ÔÚtb¡«tc¶Î»ð¼ýÒ²ÊÇÉÏÉýµÄ | |
| C£® | tbʱ¿Ì»ð¼ýÀëµØÃæ×î¸ß | |
| D£® | ÔÚ0¡«tb¶Î»ð¼ýÊÇÉÏÉýµÄ£¬ÔÚtb¡«tc¶Î»ð¼ýÊÇÏÂÂäµÄ |
| A£® | OµãµÄµç³¡Ç¿¶ÈºÍµçÊÆ¾ùΪÁã | |
| B£® | °ÑÒ»¸ºµãµçºÉ´ÓbµãÑØ×Åb¡úa¡úcµÄ·¾¶Òƶ¯µ½cµã£¬µç³¡Á¦×ö¹¦ÎªÁã | |
| C£® | ͬһµãµçºÉÔÚa¡¢dÁ½µãËùÊܵ糡Á¦Ïàͬ | |
| D£® | ½«Ò»ÕýµãµçºÉÓÉaµãÒÆµ½cµã£¬ÆäµçÊÆÄÜ»áÔö´ó |
| A£® | ´«ËÍ´ø¶Ô¸Ãú¿é×öµÄ¹¦Îª0.4J | |
| B£® | ú¿éÓë´«ËÍ´ø¼äĦ²Á²úÉúµÄÈÈÁ¿Îª0.8J | |
| C£® | ´«ËÍ´ø¿Ë·þĦ²ÁÁ¦×ö¹¦Îª1.6J | |
| D£® | µç¶¯»úÔö¼ÓÊä³öµÄµçÄÜΪ0.8J |
| A£® | ÉÁ¹âÖÜÆÚΪ$\sqrt{\frac{l}{g}}$ | B£® | ÉÁ¹âÖÜÆÚΪ$\sqrt{\frac{2l}{g}}$ | ||
| C£® | ƽÅ×Ô˶¯µÄˮƽËÙ¶ÈΪ$\sqrt{gl}$ | D£® | ƽÅ×Ô˶¯µÄˮƽËÙ¶ÈΪ2$\sqrt{gl}$ |
| A£® | Ô˶¯Ô±×ÔÓÉÂäÌåµÄÎ»ÒÆÊÇ3.9¡Á104 m | |
| B£® | Ô˶¯Ô±×ÔÓÉÂäÌåµÄÎ»ÒÆÊÇ7.22¡Á103 m | |
| C£® | Ô˶¯Ô±×ÔÓÉÂäÌåµÄÄ©ËÙ¶ÈÊÇ3.8¡Á102 m/s | |
| D£® | Ô˶¯Ô±×ÔÓÉÂäÌåµÄƽ¾ùËÙ¶ÈÊÇ3.8¡Á102 m/s |