ÌâÄ¿ÄÚÈÝ

18£®µç´Å¹ìµÀ¹¤×÷Ô­ÀíÈçͼËùʾ£¬´ý·¢É䵯Ìå¿ÉÔÚÁ½Æ½ÐйìµÀ֮ǰ×ÔÓÉÒÆ¶¯£¬²¢Óë¹ìµÀ±£³ÖÁ¼ºÃ½Ó´¥£¬·¢ÉäʱƽÐе¼¹ìÓëË®Æ½Ãæ³É¦È½Ç£¬³¤¶ÈΪLÁ½¹ìµÀ¼ä¾àΪd£¬µçÁ÷´ÓÒ»Ìõ¹ìµÀÁ÷È룬ͨ¹ýµ¼µ¯Ìåºó´ÓÁíÒ»Ìõ¹ìµÀÁ÷»Ø£®¹ìµÀµçÁ÷¿ÉÐγÉÔÚµ¯Ìå´¦´¹Ö±¹ìµÀÉÏÊܵ½°²ÅàÁ¦µÄ×÷Óöø¸ßËÙÉä³ö£¬¼ÙÈôµ¯ÌåAÊܵ½¹ìµÀ×èÁ¦ºöÂÔ²»¼Æ£®µ±¹ìµÀµçÁ÷I1=I0ʱ£¬µ¯ÌåA¾²Ö¹²»¶¯£¬Ïְѵ¯ÌåA·Åµ½¹ìµÀ×î϶ˣ¬µ±¹ìµÀµçÁ÷I2=nI0ʱ£¬µ¯ÌåA¼ÓËÙÔ˶¯£®ÊÔÇó£º
£¨1£©µ¯ÌåA·Åµ½¹ìµÀÔ˶¯µÄ¼ÓËÙ¶ÈaºÍʱ¼ät£®
£¨2£©µ¯ÌåAÀ뿪¹ìµÀʱËÙ¶È´óС£®
£¨3£©·¢Éäµç´ÅÅÚÄ¿µÄÊÇʹµ¯Ìå»ñµÃ½Ï´ó¶¯ÄÜ£¬ÊÔÇó·¢ÉäÒ»¸öµ¯ÌåÏûºÄµçÄܺÍЧÂÊ£¨¼ÙÈôµç·²úÉúµÄ½¹¶úÈȿɺöÂÔ£©£®

·ÖÎö £¨1£©µ±µçÁ÷ΪI0ʱ£¬µ¯ÌåÊÜÖØÁ¦¡¢Ö§³ÖÁ¦ºÍĦ²ÁÁ¦¶øÆ½ºâ£¬¸ù¾ÝƽºâÌõ¼þÁÐʽ£»µ±µçÁ÷ΪnI0ʱ£¬µ¯ÌåA¼ÓËÙÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â¼ÓËÙ¶È£¬¸ù¾ÝÎ»ÒÆ¹«Ê½ÁÐʽÇó½âÔ˶¯Ê±¼ä£»
£¨2£©¶Ô¼ÓËÙ¹ý³Ì¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇó½âÄ©ËÙ¶È£»
£¨3£©¸ù¾ÝW=FALÇó½â·¢ÉäÒ»¸öµ¯ÌåÏûºÄµçÄÜ£¬¸ù¾Ý¦Ç=$\frac{\frac{1}{2}m{v}^{2}}{W}¡Á100%$Çó½âЧÂÊ£®

½â´ð ½â£º£¨1£©µ±µçÁ÷I1=I0ʱ£¬Âú×㣺
BId-mgsin¦È=0      ¢Ù
B=kI              ¢Ú
½âµÃ£º
$k=\frac{mgsin¦È}{I_0^2d}$
µ±¹ìµÀµçÁ÷I2=nI0ʱ£¬µ¯Ìå¼ÓËÙ¶ÈÂú×㣺
$kI_2^2d-mgsin¦È=ma$   ¢Û
½âµÃ£ºa=£¨n2-1£©gsin¦È£¬·½ÏòÑØÐ±ÃæÏòÉÏ£®
ÔÚ¹ìµÀÉÏÔ˶¯Ê±¼äÂú×㣺
L=$\frac{1}{2}a{t}^{2}$             ¢Ü
½âµÃ£º
$t=\sqrt{\frac{2L}{£¨{n}^{2}-1£©gsin¦È}}$?
£¨2£©µ¯ÌåÀ뿪¹ìµÀʱËÙ¶ÈÂú×㣺
$kI_2^2dL-mgLsin¦È=\frac{1}{2}m{v^2}$     ¢Ý
½âµÃ£º$v=\sqrt{2L£¨{n^2}-1£©gsin¦È}$£®
£¨3£©·¢ÉäÒ»¸öµ¯Ìåµç´ÅÅÚÏûºÄµçÄÜΪ£º
$E=kI_2^2dL$     ¢Þ
µç´ÅÅÚµÄЧÂÊΪ£º
$¦Ç=\frac{{\frac{1}{2}m{v^2}}}{E}$     ¢ß
½âµÃ£º
E=n2mgLsin¦È
$¦Ç=\frac{{{n^2}-1}}{n^2}$
´ð£º£¨1£©µ¯ÌåA·Åµ½¹ìµÀÔ˶¯µÄ¼ÓËÙ¶ÈaΪ£¨n2-1£©gsin¦È£¬Ê±¼ätΪ$\sqrt{\frac{2L}{£¨{n}^{2}-1£©gsin¦È}}$£»
£¨2£©µ¯ÌåAÀ뿪¹ìµÀʱËÙ¶È´óСΪ$\sqrt{2L£¨{n}^{2}-1£©gsin¦È}$£»
£¨3£©·¢Éäµç´ÅÅÚÄ¿µÄÊÇʹµ¯Ìå»ñµÃ½Ï´ó¶¯ÄÜ£¬·¢ÉäÒ»¸öµ¯ÌåÏûºÄµçÄÜΪ$k{I}_{2}^{2}dL$£¬Ð§ÂÊΪ$\frac{{n}^{2}-1}{{n}^{2}}$£®

µãÆÀ ±¾ÌâÊÇÁ¦µç×ÛºÏÎÊÌâ¹Ø¼üÊÇÃ÷È·µ¯Í·µÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£¬½áºÏ¹²µãÁ¦Æ½ºâÌõ¼þ¡¢Å£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½¡¢¶¯Äܶ¨ÀíÁÐʽÇó½â£¬²»ÄÑ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø