ÌâÄ¿ÄÚÈÝ
4£®£¨1£©ÈôÆäÇ¡ºÃ¾¹ý´Å³¡¢ñ×ó±ß½çÉÏPµã£¨-a£¬$\frac{a}{2}$£©£¬ÇóÁ£×ÓÉä³ö´Å³¡¢ñµÄËÙ¶Èv1µÄ´óС£»
£¨2£©ÈôÔÈÇ¿´Å³¡¢ñ×ó²àͬʱ´æÔÚÒ»¸ö´¹Ö±Ö½ÃæÏòÀï¡¢´Å¸ÐӦǿ¶È´óСҲΪBµÄÎÞÏÞ´óÔÈÇ¿´Å³¡¢ò£¬ÒªÊ¹Á£×ÓµÚ¶þ´ÎÑØ+x·½ÏòÔ˶¯Ê±Ç¡¾¹ýyÖáÉϵÄMµã£¨0£¬-4a£©£¬ÊÔÇóÆäÔÚ+xÖáÉÏÎÞ³õËÙ¶ÈÊÍ·ÅʱµÄλÖÃ×ø±ê£®
·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬½áºÏ¼¸ºÎ¹ØÏµ£¬¼´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÔ˶¯¹ì¼££¬ÒÀ¾Ý¼¸ºÎ¹ØÏµ£¬½¨Á¢ÒÑÖª³¤¶ÈÓë°ë¾¶µÄ¹ØÏµ£¬ÔÙ½áºÏ¶¯Äܶ¨Àí£¬¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÈçͼËùʾ£¬Óɼ¸ºÎ¹ØÏµ¿ÉÖª£¬${r}_{1}^{2}={a}^{2}+£¨{r}_{1}-\frac{a}{2}£©^{2}$£»![]()
¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐÔ˶¯¹ì¼£°ë¾¶r1=$\frac{5a}{4}$£»
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬¿ÉµÃ£º$Bq{v}_{1}=m\frac{{v}_{1}^{2}}{{r}_{1}}$
Òò´ËÉä³ö´Å³¡µÄËÙ¶Èv1=$\frac{5Bqa}{4m}$£»
£¨2£©ÒªÊ¹Á£×ÓµÚ¶þ´ÎÑØ+x·½ÏòÔ˶¯Ê±£¬Ç¡ºÃ¾¹ýyÖáÉϵÄMµã£¨0£¬-4a£©£¬¹ì¼£ÈçͼËùʾ£º![]()
¸ù¾Ýͼ¿ÉÖª£¬ÔÚ¡÷O1O2DÖУ¬O1O2=2r3£¬O2D=2a£¬O1D=r3+a£»
Óɼ¸ºÎ¹ØÏµ£¬¿ÉÖª£¬$£¨2{r}_{3}£©^{2}=£¨2a£©^{2}+£¨{r}_{3}+a£©^{2}$£»
½âµÃ£º${r}_{3}=\frac{5}{3}a$£»
ÓÖBqv3=$\frac{m{v}_{3}^{2}}{{r}_{3}}$£»
Á£×ÓÔڵ糡ÖÐ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÔòÓУºqEx=$\frac{1}{2}m{v}_{3}^{2}-0$£»
ÔÚ+xÖáÉÏÎÞ³õËÙ¶ÈÊÍ·ÅʱµÄλÖÃ×ø±êx=$\frac{25q{B}^{2}{a}^{2}}{18mE}$£»
´ð£º£¨1£©Á£×ÓÉä³ö´Å³¡¢ñµÄËÙ¶Èv1µÄ´óС$\frac{5Bqa}{4m}$£»
£¨2£©ÆäÔÚ+xÖáÉÏÎÞ³õËÙ¶ÈÊÍ·ÅʱµÄλÖÃ×ø±ê$\frac{25q{B}^{2}{a}^{2}}{18mE}$£®
µãÆÀ ¿¼²éÁ£×ÓÔڵ糡ÖмÓËÙÓë´Å³¡ÖÐÆ«×ª£¬ÕÆÎÕÅ£¶ÙµÚ¶þ¶¨ÂÉÓ붯Äܶ¨Àí£¬Àí½âÔ˶¯Ñ§ÓëÏòÐÄÁ¦¹«Ê½£¬×¢Ò⼸ºÎ¹ØÏµµÄÕýÈ·½¨Á¢£®
| A£® | $\frac{p}{q}$v | B£® | $\frac{q}{p}$v | C£® | $\sqrt{\frac{p}{q}}$v | D£® | $\sqrt{\frac{q}{p}}$v |
| A£® | HµãµÄµçÊÆÎª5V | |
| B£® | µç³¡Ç¿¶È·½ÏòÒ»¶¨ÓëI¡¢KÁ½µãµÄÁ¬Ïß´¹Ö± | |
| C£® | E¡¢KÁ½µã¼äµçµçÊÆ²îÓëI¡¢LÁ½µãµÄµçÊÆ²îÏàµÈ | |
| D£® | °Ñ2CÕýµçºÉ´ÓFµãÒÆµ½Zµã£¬ÎÞÂÛºÎÖÖ·¾¶£¬¶¼ÐèÒª¿Ë·þµç³¡Á¦×ö¹¦4J |
| A£® | $\frac{1}{2}$mv2-mgh-¦Ìmghcot¦È | B£® | mgh+$\frac{1}{2}$mv2-mghtan¦È | ||
| C£® | $\frac{1}{2}$mv2-mgh | D£® | mgh-$\frac{1}{2}$mv2+¦Ìmghcot¦È |