ÌâÄ¿ÄÚÈÝ
7£®£¨1£©Í¼ÖÐsÓ¦ÊÇBÇò³õʼλÖõ½BÇòµÄÂäµãµÄˮƽ¾àÀ룮
£¨2£©ÎªÁË̽¾¿ÅöײÖеÄÊØºãÁ¿£¬Ó¦²âµÃmA¡¢mB¡¢L¡¢¦Á¡¢¦Â¡¢H¡¢sµÈÎïÀíÁ¿£®
£¨3£©ÓòâµÃµÄÎïÀíÁ¿±íʾ£ºmAvA=mA$\sqrt{2gL£¨1-cos¦Á£©}$£»mAv¡äA=mA$\sqrt{2gL£¨1-cos¦Â£©}$£»mBv¡äB=mBS$\sqrt{\frac{g}{2H}}$£®
·ÖÎö AÇòϰڹý³Ì»úеÄÜÊØºã£¬¸ù¾ÝÊØºã¶¨ÂÉÁÐʽÇó×îµÍµãËÙ¶È£»ÇòAÉϰڹý³Ì»úеÄÜÔÙ´ÎÊØºã£¬¿ÉÇó½âÅöײºóËÙ¶È£»ÅöײºóСÇòB×öƽÅ×Ô˶¯£¬¸ù¾ÝƽÅ×Ô˶¯µÄ·ÖÎ»ÒÆ¹«Ê½Çó½âÅöײºóBÇòµÄËÙ¶È£¬Çó³ö¶¯Á¿µÄ±í´ïʽ£¬È»ºó·ÖÎö´ðÌ⣮
½â´ð ½â£º£¨1£©ÓÉͼ¿ÉÖª£¬SΪBÇòµÄ³õʼλÖõ½BÇòÂäµã¼äµÄ¾àÀ룻
£¨2£©Ð¡Çò´ÓA´¦Ï°ڹý³ÌÖ»ÓÐÖØÁ¦×ö¹¦£¬»úеÄÜÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨Âɵãº
mAgL£¨1-cos¦Á£©=$\frac{1}{2}$mAvA2-0£¬
½âµÃ£ºvA=$\sqrt{2gL£¨1-cos¦Á£©}$£¬
ÔòPA=mAvA=mA$\sqrt{2gL£¨1-cos¦Á£©}$£¬ÎªÁ˲âÁ¿ÅöײǰAÇòµÄ¶¯Á¿£¬ÐèÒª²âÁ¿µÄÎïÀíÁ¿ÓУºmA¡¢¦Á¡¢L£»
СÇòAÓëСÇòBÅöײºó¼ÌÐøÔ˶¯£¬ÔÚAÅöºóµ½´ï×î×ó¶Ë¹ý³ÌÖУ¬»úеÄÜÔÙ´ÎÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨Âɵãº
-mAgL£¨1-cos¦Â£©=0-$\frac{1}{2}$mAvA¡ä2£¬
½âµÃvA¡ä=$\sqrt{2gL£¨1-cos¦Â£©}$£¬
PA¡ä=mAvA¡ä=mA$\sqrt{2gL£¨1-cos¦Â£©}$£¬ÎªÁ˲âÁ¿ÅöײºóAÇòµÄ¶¯Á¿»¹ÐèÒª²âÁ¿µÄÎïÀíÁ¿ÓУºmA¡¢¦Â¡¢L£»
ÅöǰСÇòB¾²Ö¹£¬ÔòPB=0£»
ÅöײºóBÇò×öƽÅ×Ô˶¯£¬Ë®Æ½·½Ïò£ºS=vB¡ät£¬ÊúÖ±·½ÏòH=$\frac{1}{2}$gt2£¬
½âµÃ£ºvB¡ä=S$\sqrt{\frac{g}{2H}}$£¬
ÔòÅöºóBÇòµÄ¶¯Á¿Îª£ºPB¡ä=mBvB¡ä=mBs$\sqrt{\frac{g}{2H}}$£¬
ΪÁ˲âÁ¿ÅöײºóBÇòµÄ¶¯Á¿£¬ÐèÒª²âÁ¿µÄÎïÀíÁ¿ÓУº
Óɶ¯Á¿Êغ㶨ÂÉ¿ÉÖª£¬ÊµÑéÐèÒª²âÁ¿µÄÎïÀíÁ¿Îª£ºmA¡¢mB¡¢L¡¢¦Á¡¢¦Â¡¢H¡¢s£»
ÓÉÒÔÉϼÆËã¿ÉµÃ£¬ÓòâÁ¿µÄÎïÀíÁ¿±íʾ½á¹ûΪ£ºmAvA=mA$\sqrt{2gL£¨1-cos¦Á£©}$£»mAv¡äA=mA$\sqrt{2gL£¨1-cos¦Â£©}$£»mBvB¡ä=mBS$\sqrt{\frac{g}{2H}}$£®
¹Ê´ð°¸Îª£º£¨1£©BÇòÂ䵨µã¡¡£¨2£©mA¡¢mB¡¢L¡¢¦Á¡¢¦Â¡¢H¡¢s
£¨3£©mA$\sqrt{2gL£¨1-cos¦Á£©}$£¬mA$\sqrt{2gL£¨1-cos¦Â£©}$£¬mB•s$\sqrt{\frac{g}{2H}}$
µãÆÀ ±¾Ì⿼²éÁËÈ·¶¨ÊµÑéÐèÒª²âÁ¿µÄÁ¿£¬ÖªµÀʵÑéÔÀí¡¢Çó³öʵÑéÐèÒªÑéÖ¤µÄ±í´ïʽÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£®
| A£® | ʱ¿ÌtÏßȦÖеçÁ÷µÄ˲ʱֵi=$\frac{BS¦Ø}{R}$cos¦Øt | |
| B£® | ÏßȦÖеçÁ÷µÄÓÐЧֵI=$\frac{BS¦Ø}{R}$ | |
| C£® | ÏßȦÖеçÁ÷µÄÓÐЧֵI=$\frac{\sqrt{2}BS¦Ø}{2R}$ | |
| D£® | ÏßȦÖеçÁ÷µÄµç¹¦ÂÊP=$\frac{£¨BS¦Ø£©^{2}}{R}$ |