ÌâÄ¿ÄÚÈÝ
11£®£¨1£©Çó´Å³¡IµÄ´Å¸ÐӦǿ¶ÈB1£»
£¨2£©Èô´Å³¡¢òµÄ´Å¸ÐӦǿ¶ÈB2=3B1£¬ÇóÁ£×Ó´ÓµÚÒ»´Î¾¹ýyÖáµ½µÚËĴξ¹ýyÖáµÄʱ¼ät¼°Õâ¶Îʱ¼äÄ򵀮½¾ùËÙ¶È£®
·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öÁ£×Ó½øÈë´Å³¡¢ñʱµÄËÙ¶È£¬½áºÏÁ£×ÓÔڴų¡¢ñÖеĹìµÀ°ë¾¶£¬¸ù¾Ý°ë¾¶¹«Ê½Çó³ö´Å³¡¢ñµÄ´Å¸ÐӦǿ¶È£®
£¨2£©×÷³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬Í¨¹ýÖÜÆÚ¹«Ê½ºÍ°ë¾¶¹«Ê½Çó³öÁ£×Ó´ÓµÚÒ»´Î¾¹ýyÖáµ½µÚËĴξ¹ýyÖáµÄʱ¼äÄÚµÄʱ¼äºÍÎ»ÒÆ£¬´Ó¶øÇó³öƽ¾ùËÙ¶È£®
½â´ð ½â£º£¨1£©ÉèÁ£×Ó´¹Ö±ÓÚxÖá½øÈë´Å³¡¢ñʱµÄËÙ¶ÈΪv£¬ÓÉÔ˶¯Ñ§¹«Ê½µÃ£¬2al=v2![]()
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵã¬qE=ma
ÓÉÌâÒâÖª£¬Á£×ÓÒÔ´¹Ö±ÓÚyÖáµÄ·½Ïò½øÈë´Å³¡¢ò£¬ËµÃ÷Ô˶¯µÄ¹ì¼£ÊÇ$\frac{1}{4}$Ô²ÖÜ£¬ËùÒÔÁ£×ÓÔÚ¢ñÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îªl£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ$qv{B}_{1}=m\frac{{v}^{2}}{l}$£¬
ÁªÁ¢¸÷ʽ½âµÃ${B}_{1}=\sqrt{\frac{2mE}{ql}}$£®
£¨2£©ÉèÁ£×ÓÔڴų¡¢ñÖÐÔ˶¯µÄ°ë¾¶Îªr1£¬ÖÜÆÚΪT1£¬
Ôòr1=l£¬${T}_{1}=\frac{2¦Ð{r}_{1}}{v}=\frac{2¦Ðm}{q{B}_{1}}$£¬
Ôڴų¡¢òÖÐÔ˶¯µÄ°ë¾¶Îªr2£¬ÖÜÆÚΪT2£¬
$3qv{B}_{1}=m\frac{{v}^{2}}{{r}_{2}}$£¬${T}_{2}=\frac{2¦Ð{r}_{2}}{v}=\frac{2¦Ðm}{3q{B}_{1}}$£¬
µÃ${r}_{2}=\frac{{r}_{1}}{3}$£¬${T}_{2}=\frac{{T}_{1}}{3}$£®
Á£×Ó´ÓµÚÒ»´Î¾¹ýyÖáµ½µÚËĴξ¹ýyÖáµÄʱ¼ät=$\frac{{T}_{1}}{2}+{T}_{2}$£¬
´úÈëÊý¾Ý½âµÃ$t=\frac{5¦Ð}{3}\sqrt{\frac{ml}{2qE}}$£¬
Á£×ÓÔÚµÚÒ»´Î¾¹ýyÖáµ½µÚËĴξ¹ýyÖáʱ¼äÄÚµÄÎ»ÒÆs=2r1-4r2=2r2£¬
$\overline{v}=\frac{s}{t}=\frac{2}{5¦Ð}\sqrt{\frac{2qEl}{m}}$£¬·½ÏòÑØyÖḺ·½Ïò£®
´ð£º£¨1£©´Å³¡IµÄ´Å¸ÐӦǿ¶ÈΪ$\sqrt{\frac{2mE}{ql}}$£®
£¨2£©Á£×Ó´ÓµÚÒ»´Î¾¹ýyÖáµ½µÚËĴξ¹ýyÖáµÄʱ¼äΪ$\frac{5¦Ð}{3}\sqrt{\frac{ml}{2qE}}$£¬Õâ¶Îʱ¼äÄ򵀮½¾ùËÙ¶ÈΪ$\frac{2}{5¦Ð}\sqrt{\frac{2qEl}{m}}$£®
µãÆÀ ±¾ÌâΪ´øµçÁ£×ÓÔÚ×éºÏ³¡ÖеÄÔ˶¯£¬Òª×¢Òâ·Ö±ðÓ¦Óõ糡ÖеļÓËÙ£¬´Å³¡ÖеÄÔÈËÙÔ²ÖÜÔ˶¯µÄ¹æÂɽøÐзÖÎöÇó½â£®²¢×¢ÒâÈÏÕæ·ÖÎöÆä¶ÔÓ¦µÄÎïÀí¹ý³Ì£®Ã÷È·ÎïÀí¹æÂɵÄÕýÈ·Ó¦Óã®
| A£® | µçÌݼÓËÙϽµÊ±£¬µçÌݶÔÈ˵ÄÖ§³ÖÁ¦´óÓÚÖØÁ¦ | |
| B£® | µçÌݼõËÙϽµÊ±£¬µçÌݶÔÈ˵ÄÖ§³ÖÁ¦´óÓÚÖØÁ¦ | |
| C£® | µçÌݶÔÈ˵ÄÖ§³ÖÁ¦ÔÚµçÌÝÉÏÉýʱ×ܱÈϽµÊ±´ó | |
| D£® | µçÌݼÓËÙÉÏÉýʱ£¬µçÌÝÖеÄÈË´¦ÓÚÊ§ÖØ×´Ì¬ |
| A£® | Ïò×óÔÈËÙÔ˶¯ | B£® | Ïò×ó¼õËÙÔ˶¯ | C£® | ÏòÓÒÔÈËÙÔ˶¯ | D£® | ÏòÓÒ¼õËÙÔ˶¯ |
| A£® | Îï¿é×öÔȼÓËÙÖ±ÏßÔ˶¯ | |
| B£® | Îï¿éµÄ¼ÓËÙ¶ÈÖð½¥Ôö´ó | |
| C£® | Îï¿éµÄ¼ÓËÙ¶ÈÖð½¥¼õС | |
| D£® | Îï¿éµÄ¼ÓËÙ¶ÈÏÈÖð½¥Ôö´óºó±£³Ö²»±ä |
| A£® | ¦Ø=$\frac{2}{5}$$\sqrt{\frac{2g}{5R}}$ | B£® | ¦Ø=$\sqrt{\frac{2g}{5R}}$ | C£® | ¦Ø=$\frac{3}{2}$$\sqrt{\frac{3g}{2R}}$ | D£® | ¦Ø=$\frac{2}{5}$$\sqrt{\frac{5g}{2R}}$ |
| A£® | Îï¿éÔÚ1ºÅÅüÉÏ»¬¶¯Ê±£¬Åü¶ÔµØÃæµÄĦ²ÁÁ¦·½ÏòÏò×ó | |
| B£® | Îï¿é»¬µ½µÚ3¿éÅüʱ£¬ÌÝÐÎÅü¿ªÊ¼Ïà¶ÔµØÃ滬¶¯ | |
| C£® | Îï¿é»¬µ½µÚ4¿éÅüʱ£¬ÌÝÐÎÅü¿ªÊ¼Ïà¶ÔµØÃ滬¶¯ | |
| D£® | Îï¿éÉÏ»¬µÄÕû¸ö¹ý³ÌÖУ¬ËùÓÐÅü¾ùΪÏà¶ÔµØÃ滬¶¯ |