ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÇóԲͲ¶ÔСÇòAµÄ×÷ÓÃÁ¦NºÍÍâÁ¦FµÄ´óС£»
£¨2£©³·È¥ÍâÁ¦Fºó£¬Ð¡ÇòA½«Ô²Í²Ï»¬£¬µ±Ëü¸ÕÒªµ½NµãʱËÙ¶ÈΪ¶à´ó£¿
£¨3£©µ±¸ËÓëË®Æ½Ãæ¼Ð½ÇΪ¶à´óʱ£¬BÇòµÄËÙ¶È×î´ó£¿Çó´Ë×î´óËÙ¶È£®
·ÖÎö £¨1£©·Ö±ð¶ÔAÓëB½øÐÐÊÜÁ¦·ÖÎö£¬½áºÏ¹²µãÁ¦Æ½ºâµÄÌõ¼þ¼´¿ÉÇó³ö£»
£¨2£©Aµ½´ïNʱ£¬BµÄËÙ¶ÈÇ¡ºÃΪ0£¬ÓÉ»úеÄÜÊØºã¼´¿ÉÇó³ö£»
£¨3£©Éè¸ËÓëˮƽ·½ÏòÖ®¼äµÄ ¼Ð½Ç£¬ÓÉ»úеÄÜÊØºãÒÔ¼°·ÖËÙ¶ÈÖ®¼äµÄ¹ØÏµ¼´¿ÉÇó³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâ¿ÉÖª£¬AÊܵ½ÖØÁ¦¡¢¸ËµÄÑØ×÷ÓÃÁ¦ÒÔ¼°Í²±ÚµÄ×÷ÓÃÁ¦£¬ÈýÁ¦Æ½ºâ£¬ÔòͲ±ÚµÄÖ§³ÖÁ¦£º
F=$\frac{mg}{tan60¡ã}=\frac{\sqrt{3}mg}{3}$
¶ÔA¡¢B×é³ÉµÄÕûÌ壬ˮƽ·½ÏòÖ»Êܵ½A´¦Í²±ÚµÄÖ§³ÖÁ¦ÒÔ¼°BÊܵ½µÄÍÆÁ¦F£¬ÓɶþÁ¦Æ½ºâ¿ÉµÃ£º
F=N=$\frac{\sqrt{3}mg}{3}$
£¨2£©µ±Aµ½´ïNµãʱ£¬AµÄËٶȵķ½ÏòÊúÖ±ÏòÏ£¬Ñظ˵ķ½ÏòûÓзÖËÙ¶È£¬ËùÒÔBµÄËÙ¶ÈÇ¡ºÃµÈÓÚ0£®AÏòÏÂÔ˶¯µÄ¹ý³ÌÖÐAÓëB×é³ÉµÄϵͳµÄ»úеÄÜÊØºã£¬¶Ô£º
$mgLsin60¡ã=\frac{1}{2}m{v}^{2}$
ËùÒÔ£ºv=$\sqrt{\sqrt{3}gL}$
£¨3£©Éè¸ËÓëˮƽ·½ÏòÖ®¼äµÄ ¼Ð½Ç¦ÈʱBµÄËÙ¶È×î´ó£¬Éè´ËʱAµÄËÙ¶ÈΪvA£¬BµÄËÙ¶ÈΪvB£¬ÔòAÓëBÑØ¸Ë·½ÏòµÄ·ÖËÙ¶ÈÊÇÏàµÈµÄ£¬¶ÔAÓëBµãµÄËÙ¶È·Ö½âÈçͼ£º![]()
Ôò£ºvAsin¦È=vBcos¦È
¶ÔAÓëB×é³ÉµÄϵͳ£¬ÓÉ»úеÄÜÊØºãµÃ£º
mgLsin60¡ã-mgLsin¦È=$\frac{1}{2}m{v}_{A}^{2}+\frac{1}{2}m{v}_{B}^{2}$
ÁªÁ¢½âµÃ£º${v}_{B}=\sqrt{gL£¨\sqrt{3}-2sin¦È£©sin¦È}$
ÓɶþÏîʽ¶¨Àí¿ÉÖª£¬µ±$£¨\sqrt{3}-2sin¦È£©=sin¦È$ʱ£¬BµÄËÙ¶È×î´ó£¬¼´
ÓÉ»úеÄÜÊØºãÒÔ¼°·ÖËÙ¶ÈÖ®¼äµÄ¹ØÏµ¼´¿ÉÇó³ö
µ±$sin¦È=\frac{\sqrt{3}}{3}$£¬¦È=$arcsin\frac{\sqrt{3}}{3}$ʱ£¬BµÄËÙ¶È×î´ó£¬ÁªÁ¢¿ÉµÃ£º${v}_{Bmax}=\frac{\sqrt{\sqrt{3}gL}}{3}$
´ð£º£¨1£©Ô²Í²¶ÔСÇòAµÄ×÷ÓÃÁ¦NºÍÍâÁ¦FµÄ´óС¶¼ÊÇ$\frac{\sqrt{3}mg}{3}$£»
£¨2£©³·È¥ÍâÁ¦Fºó£¬Ð¡ÇòA½«Ô²Í²Ï»¬£¬µ±Ëü¸ÕÒªµ½NµãʱËÙ¶ÈΪ$\sqrt{\sqrt{3}gL}$£»
£¨3£©µ±¸ËÓëË®Æ½Ãæ¼Ð½ÇΪ$arcsin\frac{\sqrt{3}}{3}$ʱ£¬BÇòµÄËÙ¶È×î´ó£®Çó´Ë×î´óËÙ¶ÈΪ$\frac{\sqrt{\sqrt{3}gL}}{3}$£®
µãÆÀ ¸ÃÌâµÄÇé¾°±È½ÏÐÂÓ±£¬Éæ¼°µÄ֪ʶµã±È½Ï¶à£¬½â´ðµÄ¹Ø¼üÊÇÒªÃ÷È·ÔÚÔ˶¯µÄ¹ý³ÌÖУ¬AÓëBµÄËٶȵĴóС²»Ò»¶¨ÏàµÈ£¬Òª½áºÏ¼¸ºÎ¹ØÏµÕÒ³öËüÃǵÄËÙ¶ÈÖ®¼äµÄ¹ØÏµ£®
´ý²â¸Éµç³Ø
µçÁ÷±íA1£ºÁ¿³Ì0¡«0.6A£¬ÄÚ×èr1ԼΪ0.125¦¸
µçÁ÷±íA2£ºÁ¿³Ì0¡«300¦ÌA£¬ÄÚ×èr2Ϊ1000¦¸
»¬¶¯±ä×èÆ÷R£º×èÖµ·¶Î§0¡«20¦¸£¬¶î¶¨µçÁ÷2A
µç×èÏäR¡ä£º×èÖµ·¶Î§0¡«9999¦¸£¬¶î¶¨µçÁ÷1A
¿ª¹ØS¡¢µ¼ÏßÈô¸É
С×éÖв»Í¬µÄͬѧѡÓÃÁ˲»Í¬µÄÆ÷²ÄºÍʵÑé·½°¸£º
£¨1£©¼×ͬѧѡÓõçÁ÷±íA1¡¢µçÁ÷±íA2ºÍ»¬¶¯±ä×èÆ÷R¡¢µç×èÏäR¡äµÈÀ´²âÁ¿¸Éµç³ØµÄµç¶¯ÊƺÍÄÚµç×裬µç·Èçͼ1Ëùʾ£®
¢ÙËû½«µçÁ÷±íA2Óëµç×èÏäR¡ä´®Áª£¬Ê¹Æä¸Ä×°³ÉÒ»¸öÁ¿³ÌΪ3.0VµÄµçѹ±í£¬´Ëʱµç×èÏäR¡äµÄ×èÖµÓ¦µ÷µ½9000¦¸£»
¢ÚÔڼǼÊý¾Ýʱ£¬ËûûÓмǼµÚÈý×éµÄµçѹֵ£¬ÇëÄã¸ù¾Ýͼ2µçÁ÷±íA2µÄ±íÅÌʾÊýд³ö¶ÔÓ¦µÄµçѹֵU=1.20V£»
¢ÛÇëÄã¸ù¾ÝËû¼Ç¼µÄÊý¾Ý£¬ÔÚͼ3µÄÖ±½Ç×ø±êϵÉÏ»³öU-IͼÏó£»²¢ÓÉͼÏóµÃµ½µç³ØµÄµç¶¯ÊÆE=1.47V£¬ÄÚµç×èr=0.73¦¸£®
| ²âÁ¿´ÎÊý | 1 | 2 | 3 | 4 | 5 | 6 |
| µçÁ÷±íA1¶ÁÊýI/A | 0.12 | 0.20 | 0.36 | 0.38 | 0.50 | 0.57 |
| ¸Ä×°µçѹ±íU¶ÁÊýU/V | 1.37 | 1.32 | 1.14 | 1.10 | 1.05 |
µç·Èçͼ4Ëùʾ£®ÊµÑéÖÐËûÏȽ«µç×èÏäR¡ä×èÖµµ÷µ½×î´ó£¬±ÕºÏ¿ª¹ØS£»¶à´Îµ÷½Úµç×èÏ䣬·Ö±ð¼ÇϵçÁ÷±íµÄʾÊýIºÍµç×èÏä¶ÔÓ¦µÄ×èÖµR¡ä£»ÒÔ$\frac{1}{I}$Ϊ×Ý×ø±ê£¬ÒÔ£¨R¡ä+r2£©Îªºá×ø±ê£¬×÷$\frac{1}{I}$-£¨R¡ä+r2£©Í¼Ïߣ¬Èçͼ5Ëùʾ£¬²¢¸ù¾ÝͼÏóÇó³öͼÏßµÄбÂÊkºÍÔÚ×ÝÖáÉϵĽؾàb£®
ÇëÓÃбÂÊkºÍ½Ø¾àb£¬Ð´³öµç¶¯ÊÆE=$\frac{1}{k}$£¬ÄÚµç×èr=$\frac{b}{k}$-r2£®
£¨3£©ÇëÄã¶ÔÁ½Î»Í¬Ñ§µÄʵÑé×÷³öÆÀ¼ÛÒÒͬѧµÄÉè¼Æ·½°¸½ÏºÃ£®ÊµÑéÆ÷²Ä¼òµ¥£»Ã»ÓÐϵͳÎó²î£®
| A£® | ¶¯Ä¦²ÁÒòÊý¦Ì=$\frac{6}{7}$ | |
| B£® | ÔØÈË»¬²Ý³µ×î´óËÙ¶ÈΪ$\sqrt{\frac{2gh}{7}}$ | |
| C£® | ÔØÈË»¬²Ý³µÔÚÉ϶묵ÀÉÏÔ˶¯µÄʱ¼ä´óÓÚÔÚÏ¶λ¬µÀÉ϶¯µÄʱ¼ä | |
| D£® | ÔØÈË»¬²Ý³µÔÚÏ¶λ¬µÀÉϵļÓËÙ¶È´óСΪ$\frac{3}{5}$g |
| A£® | $\frac{¦Ð}{6B{t}_{0}}$ | B£® | $\frac{¦Ð}{4B{t}_{0}}$ | C£® | $\frac{¦Ð}{3B{t}_{0}}$ | D£® | $\frac{¦Ð}{2B{t}_{0}}$ |
| A£® | ÉþµÄÀÁ¦¶ÔÖØÎïËù×öµÄ¹¦Óë¶ÔÆû³µËù×öµÄ¹¦µÄ´úÊýºÍΪÁã | |
| B£® | ÔÚÉþÓëˮƽ·½Ïò¼Ð½ÇΪ60¡ãʱ£¬ÖØÎïËÙ¶È´óСΪ$\frac{1}{2}$v0 | |
| C£® | Æû³µ¿Ë·þĦ²ÁÁ¦Ëù×öµÄ¹¦µÄ´óСµÈÓÚÖØÎïºÍ³µ×é³ÉµÄϵͳµÄ»úеÄܼõÉÙÁ¿ | |
| D£® | ÖØÎïµÄÖØÁ¦ÊÆÄܵļõСÁ¿µÈÓÚÖØÎïºÍ³µ×é³ÉµÄϵͳ×ܶ¯ÄܵÄÔö¼ÓÁ¿ |
| A£® | ¸»À¼¿ËÁÖ·¢ÏÖ¼â¶Ë·Åµç²¢ÓÚ1753Äê·¢Ã÷±ÜÀ×Õë | |
| B£® | ½¨ÖþÎïÉϰ²×°±ÜÀ×Õë¿ÉÒÔ±ÜÃâÇ¿ÁҷŵçÏÖÏóµÄ·¢Éú | |
| C£® | ¿ÕÆø¾»»¯Æ÷²»ÄÜÀûÓþ²µç³ý³¾ | |
| D£® | ũҵÖÐÀûÓþ²µçÅçÎíÄÜÌá¸ßЧÂʺͽµµÍũҩµÄÀûÓà |
| A£® | ѧÉúµÄÊé°ü´øÒª×öµÄ¿íÒ»µã | |
| B£® | ¶ÌÅÜÔ˶¯Ô±µ½´ïÖÕµãʱҪÔÙÏòǰ³å¹ýÒ»¶Î¾àÀë | |
| C£® | ÌøÔ¶Ô˶¯Ô±ÏÈÒªÖúÅÜÒ»¶Î¾àÀëºóÔÙÆðÌø | |
| D£® | ×øÔڽγµÀïµÄ˾»úºÍ³Ë¿ÍҪϵºÃ°²È«´ø |