ÌâÄ¿ÄÚÈÝ
10£®£¨1£©ÎïÌåÑØ´«ËÍ´øÏòÉÏÔ˶¯µÄ×î´ó¾àÀëΪ¶àÉÙ£¿
£¨2£©ÎïÌåÔÚ´«ËÍ´øÉÏÔ˶¯µÄ×Üʱ¼äΪ¶àÉÙ£¿
£¨3£©ÎïÌåÔÚ´«ËÍ´øÉÏÏà¶Ô´«ËÍ´øËù×ßµÄ×Ü·³ÌΪ¶àÉÙ£¿
£¨4£©ÎïÌåÔÚ´«ËÍ´øÉÏÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿Îª¶àÉÙ£¿£¨g=10m/s2£¬sin37¡ã=0.6£¬cos37¡ã=0.8£©
·ÖÎö ÎïÌåÏÈÏòÉÏ×öÔȼõËÙÖ±ÏßÔ˶¯£¬ËٶȼõΪÁãºó×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ËٶȺʹ«ËÍ´øÏàµÈºó£¬·ÖÎöÎïÌåµÄÊÜÁ¦Çé¿ö£¬ÔÙÅжÏÎïÌåµÄÔ˶¯Çé¿ö£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɼ°Ô˶¯Ñ§¹æÂÉ·ÖÎö¼´¿ÉÇó½â£¬¸ù¾ÝQ=¦Ìmg¡÷xÇó½â²úÉúµÄÈÈÁ¿£®
½â´ð ½â£º£¨1£©ÎïÌå¾¹ýʱ¼ät1ÑØ´«ËÍ´øÏòÉÏÔ˶¯ËÙ¶ÈΪÁ㣬ÔÚʱ¼ät1ÄÚ£¬ÎïÌåµÄÎ»ÒÆÎªx1£¬´«ËÍ´øÎ»ÒÆÎªx2£¬
¶ÔÎïÌ壬ÓУºmgsin¦È+¦Ìmgcos¦È=ma1
v0=a1t1
x1=$\frac{1}{2}$a1t12
¶Ô´«ËÍ´ø£¬ÓУºx2=vt1
ÒÔÉÏÁªºÏÇó½âµÃ£ºa1=10m/s2£¬t1=1s£¬x1=5m£¬x2=2m
£¨2£©ÎïÌå¾¹ýʱ¼ät2ÑØ´«ËÍ´øÏòÏÂÔ˶¯ËٶȺʹ«ËÍ´ø¹²ËÙ£¬ÔÚʱ¼ät2ÄÚ£¬ÎïÌåµÄÎ»ÒÆÎªx3£¬´«ËÍ´øÎ»ÒÆÎªx4£¬´Ë¹ý³ÌÎïÌåµÄÊÜÁ¦Çé¿ö²»±ä£¬¼ÓËÙ¶ÈΪa1²»±ä
¶ÔÎïÌ壬ÓУºv=a1t2
x3=$\frac{1}{2}$a1t22
¶Ô´«ËÍ´ø£¬ÓУºx4=vt2
ÒÔÉÏÁªºÏÇó½âµÃ£ºt2=0.2s£¬x3=0.2m£¬x4=0.4m
ÎïÌå¾¹ýʱ¼ät3ÑØ´«ËÍ´øÏòÏÂÇ¡ºÃÀ뿪´«ËÍ´ø£¬ÉèÀ뿪ʱËÙ¶ÈΪv¡ä£¬ÔÚʱ¼ät3ÄÚ£¬ÎïÌåµÄÎ»ÒÆÎªx5£¬´«ËÍ´øÎ»ÒÆÎªx6£¬
¶ÔÎïÌ壬ÓУºmgsin¦È-¦Ìmgcos¦È=ma2
v¡ä=v+a2t3
x5=vt3+$\frac{1}{2}$a2t32
¶Ô´«ËÍ´ø£¬ÓУºx6=vt3
ÓÉÌâÒâÖª£ºx5=$\frac{L}{2}$+x1-x3
ÒÔÉÏÁªºÏÇó½âµÃ£ºa2=2m/s2£¬x5=15m£¬t3=3s£¬x6=6m£¬v¡ä=8m/s£¬
ÉèÎïÌåÔÚ´«ËÍ´øÉÏÔ˶¯µÄ×Üʱ¼äΪt£¬ÓУº
t=t1+t2+t3
½âµÃ£ºt=4.2s
£¨3£©ÉèÎïÌåÔÚ´«ËÍ´øÉÏÏà¶Ô´«ËÍ´øÔ˶¯µÄ×Ü·³ÌΪx£¬ÓУº
x=£¨ x1+x2£©+£¨ x4-x3£©+£¨x5-x6£©
½âµÃ£ºx=16.2m
£¨4£©ÉèÎïÌåÔÚ´«ËÍ´øÉÏÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿ÎªQ£¬ÓУº
Q=¦Ìmgxcos¦È
½âµÃ£ºQ=64.8J
´ð£º£¨1£©ÎïÌåÑØ´«ËÍ´øÏòÉÏÔ˶¯µÄ×î´ó¾àÀëΪ5m£»
£¨2£©ÎïÌåÔÚ´«ËÍ´øÉÏÔ˶¯µÄ×Üʱ¼äΪ4.2s£»
£¨3£©ÎïÌåÔÚ´«ËÍ´øÉÏÏà¶Ô´«ËÍ´øËù×ßµÄ×Ü·³ÌΪ16.2m£»
£¨4£©ÎïÌåÔÚ´«ËÍ´øÉÏÓÉÓÚĦ²Á¶ø²úÉúµÄÈÈÁ¿Îª64.8J£®
µãÆÀ ±¾Ì⿼²éÅ£¶ÙµÚ¶þ¶¨ÂÉÒÔ¼°Ô˶¯Ñ§»ù±¾¹«Ê½µÄÖ±½ÓÓ¦Óã¬Òª×¢ÒâÕýÈ·ÕÆÎÕÄÜÁ¿µÄת»¯·½Ïò£¬Í¬Ê±×¢ÒâÕÆÎÕÓÉÓÚĦ²Á²úÉúµÄÄÚÄܵÈÓÚĦ²ÁÁ¦ÓëÏà¶ÔÎ»ÒÆµÄ³Ë»ý£¬¼´Q=¦Ìmg¡÷x£¬ÄѶÈÊÊÖУ®
| A£® | Èô¦È=60¡ãʱ£¬Ä¾¿éËùÊܵÄĦ²ÁÁ¦Îª¦Ìmg | |
| B£® | ¦ÈÔÚ0µ½90¡ã±ä»¯¹ý³ÌÖУ¬Ä¾¿éËùÊܵÄĦ²ÁÁ¦ÏÈÔö¼Óºó¼õС | |
| C£® | ¦ÈÔÚ0µ½90¡ã±ä»¯¹ý³ÌÖУ¬Ä¾¿éËùÊܵÄĦ²ÁÁ¦±£³Ö²»±ä | |
| D£® | ¦ÈÔÚ0µ½90¡ã±ä»¯¹ý³ÌÖУ¬Ä¾¿éËùÊܵÄĦ²ÁÁ¦×î´óֵΪ$\sqrt{2}$¦Ìmg |
| A£® | ¶Ô½Ó³É¹¦ºó£¬¡°ÉñÖ۾źš±·É´¬ÀïµÄÓԱÊܵ½µÄÖØÁ¦ÎªÁã | |
| B£® | ¶Ô½Ó³É¹¦ºó£¬¡°ÉñÖ۾źš±·É´¬µÄ¼ÓËÙ¶ÈΪg | |
| C£® | ¶Ô½Ó³É¹¦ºó£¬¡°ÉñÖ۾źš±·É´¬µÄÏßËÙ¶ÈΪ$\frac{20¦ÐR}{19T}$ | |
| D£® | µØÇòÖÊÁ¿Îª${£¨\frac{20}{19}£©^3}\frac{{4{¦Ð^2}}}{{G{T^2}}}{R^3}$ |
| A£® | °ÂË¹ÌØÔÀ´ÊÜ¡°×ÝÏòÁ¦¡±µÄ¾ÖÏÞ£¬°Ñ´ÅÕë·ÅÔÚͨµçµ¼ÏßµÄÑÓ³¤ÏßÉÏ£¬´ÅÕëûÓз¢Éúƫת£¬Õâ˵Ã÷Á˵çÁ÷ûÓдÅЧӦ | |
| B£® | °ÂË¹ÌØÄ³Ò»´ÎʵÑéÖÐżȻ°Ñ´ÅÕë·ÅÔÚ¡°ÑØÄϱ±·ÅÖõÄͨµçµ¼Ïß¡±ÉÏ ·½£¬´ÅÕë·¢ÉúÁËÆ«×ª£¬Õâ˵Ã÷Á˵çÁ÷µÄ´ÅЧӦ | |
| C£® | °²ÅàµÈÈ˰ÑͨÓÐͬÏòµçÁ÷µÄÁ½¸ùµ¼Ï߯½ÐзÅÖ㬷¢ÏÖÁ½¸ùͨµçµ¼ÏßÏàÎü£¬Õâ²»ÊôÓÚµçÁ÷µÄЧӦ | |
| D£® | °Ñ´ÅÕë·ÅÔÚͨµçÂÝÏß¹ÜÖУ¬´ÅÕë·¢ÉúÁËÆ«×ª£¬Õâ²»ÊôÓÚµçÁ÷µÄ´ÅЧӦ |
| A£® | F1ºÍF2¾ùÔö´ó | B£® | F1ºÍF2¾ù¼õС | C£® | F1Ôö´ó¡¢F2¼õС | D£® | F1¼õС¡¢F2Ôö´ó |
| A£® | Ôڴų¡Öд¦ÓÚÆ½ºâ״̬ | B£® | Ôڵ糡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯ | ||
| C£® | ÔÚÔÈÇ¿´Å³¡ÖÐ×öÅ×ÌåÔ˶¯ | D£® | ÔÚÔÈÇ¿µç³¡ÖÐ×öÔÈËÙÖ±ÏßÔ˶¯ |