题目内容
12.三个同学根据不同的实验条件,进行了探究平抛运动规律的实验:(1)甲同学采用如图甲所示的装置.用小锤击打弹性金属片,金属片把A球沿水平方向弹出,同时B球被松开自由下落,观察到两球同时落地,改变小锤打击的力度,即改变A球被弹出时的速度,两球仍然同时落地,这说明平抛运动的物体在竖直方向上做自由落体运动.
(2)乙同学采用如图乙所示的装置.两个相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端可看作与光滑的水平板相切,两轨道上端分别装有电磁铁C、D;调节电磁铁C、D的高度使AC=BD,从而保证小铁球P、Q在轨道出口处的水平初速度v0相等.现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两小球能以相同的初速度v0同时分别从轨道M、N的末端射出.实验可观察到两球在水平面上相碰.仅仅改变弧形轨道M的高度,重复上述实验,仍能观察到相同的现象,这说明平抛运动的物体在水平方向上做匀速直线运动.
(3)丙同学采用频闪摄影的方法拍摄到如图丙所示的小球做平抛运动的照片,每小格的边长L=5cm,通过实验,记录了小球在运动途中的三个位置,则该小球做平抛运动的初速度为1.5m/s;运动到B点时的速度为_2.5m/s.(g取10m/s2)
分析 (1)抓住两球同时落地,得出竖直方向上的运动规律相同,从而得出平抛运动在竖直方向上的运动规律.
(2)平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,由此可得出观察到的现象.
(3)根据竖直方向上连续相等时间内的位移之差是一恒量求出相等的时间间隔,根据水平方向匀速运动可以求出平抛物体的初速度大小.
解答 解:(1)因为A、B两球始终同时落地,知A球在竖直方向上的运动规律与B球的运动规律相同,即平抛运动在竖直方向上的分运动是自由落体运动.
(2)两小铁球P、Q能以相同的初速度同时分别从轨道下端水平射出,小球P做平抛运动,小球Q在水平方向做匀速直线运动,可以看到:P球落地时刚好和Q球相遇;当同时改变两小球滚下的高度时,仍能相碰,这说明:初速度相同时,平抛运动在水平方向的运动规律与匀速运动规律相同,即:说明平抛运动在水平方向做匀速直线运动.
(3)根据平抛运动竖直方向运动特点△y=L=gT2得:T=$\sqrt{\frac{△y}{g}}=\sqrt{\frac{2×0.05}{10}}$s=0.1s
小球水平方向匀速运动,因此有:v0=$\frac{x}{T}=\frac{3×0.05}{0.1}$=1.5m/s
根据中时刻速度等于这段时间内的平均速度为:vBy=$\frac{8×0.05}{0.2}$=2m/s
运动到B点时的速度为:vB=$\sqrt{1.{5}^{2}+{2}^{2}}$=2.5m/s;
故答案为:(1)平抛运动的物体在竖直方向上做自由落体运动;
(2)平抛运动的物体在水平方向上做匀速直线运动;
(3)1.5,2.5.
点评 该实验设计的巧妙,有创新性,使复杂问题变得更直观,因此在平抛运动的规律探究活动中不一定局限于课本实验的原理,要重视学生对实验的创新,同时要加强对平抛运动规律的理解和应用
| A. | 当金属棒的速度最大时,弹簧的伸长量为△l | |
| B. | 从开始释放到最后静止,电阻R上产生的总热量等于mg△l-Ep | |
| C. | 金属棒第一次到达A处时,其加速度方向向下 | |
| D. | 金属棒第一次下降过程通过电阻R的电荷量比第一次上升过程的多 |
| A. | 0.6v | B. | 0.4v | C. | 0.2v | D. | v |
| A. | 物体所受的合外力提供向心力 | B. | 向心力是一个恒力 | ||
| C. | 向心力的大小一直在变化 | D. | 向心力是物体受到的指向圆心的力 |