ÌâÄ¿ÄÚÈÝ
5£®£¨1£©µç×Óͨ¹ýBµãʱµÄËÙ¶È´óС£»
£¨2£©ÓÒ²àÆ½ÐнðÊô°åµÄ³¤¶È£»
£¨3£©µç×Ó´©³öÓÒ²àÆ½ÐнðÊô°åʱµÄ¶¯ÄÜ£®
·ÖÎö £¨1£©ÖÊ×ÓÔÚ¼ÓËٵ糡ÖУ¬µç³¡Á¦×öÕý¹¦eU0£¬Óɶ¯Äܶ¨ÀíÇó½âÖÊ×ÓÉä³ö¼ÓËٵ糡µÄËÙ¶È£®
£¨2£©ÖÊ×Ó½øÈëÆ«×ªµç³¡ºó×öÀàÆ½Å×Ô˶¯£¬ÑØË®Æ½·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬Î»ÒÆ´óСµÈÓڰ峤L£»ÊúÖ±·½Ïò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Î»ÒÆ´óСµÈÓÚ°å¼ä¾àÀëµÄÒ»°ë£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬ÓÉÔ˶¯Ñ§¹«Ê½Çó½â°å³¤L£®
£¨3£©ÔÚÆ«×ªµç³¡ÖУ¬µç³¡Á¦¶ÔÖÊ×Ó×öΪ$\frac{1}{2}$eU£¬¸ù¾Ý¶¯Äܶ¨Àí£¬¶ÔÈ«¹ý³ÌÑо¿£¬Çó½âÖÊ×Ó´©³öµç³¡Ê±µÄËÙ¶È
½â´ð ½â£º£¨1£©ÔÚ¼ÓËٵ糡ÖÐÓɶ¯Äܶ¨Àí¿ÉµÃ£º$e{U}_{1}=\frac{1}{2}m{v}^{2}$
½âµÃ£ºv=$\sqrt{\frac{2e{U}_{1}}{m}}$
£¨2£©Á£×ÓÔÚÊúÖ±·½Ïò£ºy=$\frac{1}{2}a{t}^{2}$£¬a=$\frac{e{U}_{2}}{md}$
ÔÚˮƽ·½Ïò£ºx=L=vt
ÁªÁ¢ÉÏʽµÃµ½£º$\frac{1}{2}d=\frac{1}{2}\frac{e{U}_{2}{L}^{2}}{md{v}^{2}}$
´úÈëÊý¾ÝµÃ£ºL=$d=\sqrt{\frac{2{U}_{1}}{{U}_{2}}}$
£¨2£©´Ó¸Õ¿ªÊ¼µ½Éä³öµç³¡µÄ¹ý³ÌÖÐÔËÓö¯Äܶ¨ÀíµÃ£º
$\frac{1}{2}mv{¡ä}^{2}=e£¨{U}_{1}+\frac{{U}_{2}}{2}£©$
´ð£º£¨1£©µç×Óͨ¹ýBµãʱµÄËÙ¶È´óСΪ$\sqrt{\frac{2e{U}_{1}}{m}}$£»
£¨2£©ÓÒ²àÆ½ÐнðÊô°åµÄ³¤¶ÈΪ$\sqrt{\frac{2{U}_{1}}{{U}_{2}}}$£»
£¨3£©µç×Ó´©³öÓÒ²àÆ½ÐнðÊô°åʱµÄ¶¯ÄÜΪ$e£¨{U}_{1}+\frac{{U}_{2}}{2}£©$
µãÆÀ ±¾ÌâÊǸ´ºÏ³¡ÎÊÌ⣬¹Ø¼üÊÇ·ÖÎöÖÊ×ӵķÖÎöÇé¿öºÍÔ˶¯Çé¿ö£®ÔÚÆ«×ªµç³¡ÖÐÖÊ×Ó×öÀàÆ½Å×Ô˶¯£¬²ÉÓÃÔ˶¯µÄ·Ö½â·½·¨Ñо¿