题目内容

13.如图所示,两个倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a、b、c,开始均静止于同一高度处,其中b小球在两斜面之间,a、c两小球在斜面顶端.若同时释放,小球a、b、c到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,小球a、b、c到达该水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系不正确的是(  )
A.t1>t3>t2B.t1=t1′、t2=t2′、t3=t3
C.t1′>t3′>t2D.t1<t1′、t2<t2′、t3<t3

分析 第一种情况:三个小球同时从静止释放时,b球做自由落体运动,a、c做匀加速直线运动,由牛顿第二定律得知a的加速度为gsin30°,c的加速度为gsin45°,根据几何关系,用高度表示a、c两球的位移,由位移公式x=$\frac{1}{2}$at2,比较t1、t2、t3的大小.
第二种情况:a、c小球都做类平抛运动,根据运动的分解可知,小球沿斜面向下方向都做初速度为零匀加速直线运动,a的加速度为gsin30°,c的加速度为gsin45°,根据几何关系,用高度表示a、c两球的位移,由位移公式x=$\frac{1}{2}$at2,比较t1与t1′、t2与t2′的大小.b球做平抛运动,竖直方向做自由落体运动,由h=$\frac{1}{2}$gt2,比较t3与t3′的大小.

解答 解:第一种情况:b球做自由落体运动,a、c做匀加速运动.设斜面的高度为h,则
对a球:$\frac{h}{sin30°}$=$\frac{1}{2}$gsin30°${t}_{1}^{2}$,
对b球:h=$\frac{1}{2}$g${t}_{2}^{2}$
对c球:$\frac{h}{sin45°}$=$\frac{1}{2}$gsin45°${t}_{3}^{2}$
由数学知识得:t1>t3>t2
第二种情况:a、b、c三球都沿水平方向有初速度,而水平方向不受力,故做匀速直线运动;
a、c小球沿斜面向下方向分运动不变,b球竖直方向分运动也不变,故:t1=t1′、t2=t2′、t3=t3′.
故ABC正确,D错误;
本题选错误的,故选:D.

点评 本题是匀加速直线运动、平抛运动和类平抛运动的对比,类平抛运动和平抛运动运用运动的分解法研究,在斜面内的类平抛运动要掌握沿斜面向下方向做匀加速直线运动,平行于斜面底边方向做匀速直线运动.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网