ÌâÄ¿ÄÚÈÝ

9£®Èçͼ£¨a£©Ëùʾ£¬¾øÔµ¹ìµÀMNPQλÓÚͬһÊúÖ±ÃæÄÚ£¬ÆäÖÐMN¶Îˮƽ£¬PQ¶ÎÊúÖ±£¬NP¶ÎΪ¹â»¬µÄ$\frac{1}{4}$Ô²»¡£¬Ô²ÐÄΪO£¬°ë¾¶Îªa£¬¹ìµÀ×î×ó¶ËMµã´¦¾²ÖÃÒ»ÖÊÁ¿Îªm¡¢µçºÉÁ¿Îªq£¨q£¾0£©µÄÎï¿éA£¬Ö±ÏßNN¡äÓÒ²àÓз½ÏòˮƽÏòÓҵĵ糡£¨Í¼ÖÐδ»­³ö£©£¬³¡Ç¿ÎªE=$\frac{mg}{q}$£¬ÔÚ°üº¬Ô²»¡¹ìµÀNPµÄONO¡äPÇøÓòÓз½Ïò´¹Ö±Ö½ÃæÏòÍâµÄÔÈÇ¿´Å³¡£¬ÔÚ¹ìµÀM¶Ë×ó²àÓÐÒ»·ÅÔÚˮƽ¹â»¬×ÀÃæÉϵĿɷ¢ÉäµÄ¡°ÅÚµ¯¡±µÄµç´ÅÅÚÄ£ÐÍ£¬Æä½á¹¹Í¼Èçͼ£¨b£©Ëùʾ£®µç´ÅÅÚÓÉÁ½ÌõµÈ³¤µÄƽÐй⻬µ¼¹ìI¡¢IIÓëµçÔ´ºÍ¿ª¹ØS´®Áª£®µçÔ´µÄµç¶¯ÊÆÎªU0£¬ÄÚ×èΪr£¬µ¼¹ìI¡¢IIÏà¾àΪd£¬µç×èºöÂÔ²»¼Æ£¬¡°ÅÚµ¯¡±ÊÇÒ»ÖÊÁ¿Îª2m¡¢µç×èΪRµÄ²»´øµçµ¼Ìå¿éC£¬C¸ÕºÃÓëI¡¢II½ôÃܽӴ¥£¬¾àÀëÁ½µ¼¹ìÓÒ¶ËΪl£¬CµÄµ×ÃæÓë¹ìµÀMNÔÚÍ¬Ò»Ë®Æ½ÃæÉÏ£¬Õû¸öµç´ÅÅÚ´¦ÓÚ¾ùÔȴų¡ÖУ¬´Å³¡·½ÏòÊúÖ±ÏòÏ£¬´Å¸ÐӦǿ¶È´óСΪB0£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬²»¿¼ÂÇCÔÚµ¼¹ìÄÚÔ˶¯Ê±µÄµç´Å¸ÐÓ¦ÏÖÏó£¬A¡¢C¿ÉÊÓΪÖʵ㣬²¢ÉèAÔÚÔ˶¯¹ý³ÌÖÐËù´øµçºÉһֱδ±ä£®
£¨1£©ÇóCÓëAÅöײǰµÄËÙ¶Èv0µÄ´óС£»
£¨2£©ÉèA¡¢CµÄÅöײΪµ¯ÐÔÅöײ£¬A¡¢CÓëMN¹ìµÀµÄ»¬¶¯Ä¦²ÁÒòÊýÏàͬ£¬ÈôÅöºóAÇ¡Äܵ½´ïPµã£¬ÇóC×îÖÕֹͣλÖõ½MµãµÄ¾àÀ룻
£¨3£©ÉèÅöºóAÇ¡Äܵ½´ïPµã£¬ÈôÒªÇóAÔ˶¯Ê±Ê¼ÖÕ²»À뿪Բ»¡¹ìµÀ£¬ÇóONO¡äPÇøÓòÄڴų¡µÄ´Å¸ÐӦǿ¶ÈBÓ¦Âú×ãµÄÌõ¼þ£®

·ÖÎö £¨1£©Ïȸù¾ÝÅ·Ä·¶¨ÂÉÇó³öͨ¹ý¡°ÅÚµ¯¡±µÄ»ØÂ·µÄµçÁ÷£¬ÔÙÓɶ¯Äܶ¨ÀíÇóCÓëAÅöײǰµÄËÙ¶Èv0µÄ´óС£®
£¨2£©A¡¢CµÄÅöײΪµ¯ÐÔÅöײ£¬¸ù¾Ý¶¯Á¿ÊغãºÍ¶¯ÄÜÊØºãÁÐʽ£¬µÃµ½ÅöºóÁ½ÕßµÄËٶȱí´ïʽ£®AÔÚNN¡äÓÒ²àÊܵ½µÄµç³¡Á¦ÓëÖØÁ¦´óСÏàµÈ£¬ÖØÁ¦ºÍµç³¡Á¦µÄºÏÁ¦´óСΪ$\sqrt{2}$mg£¬·½Ïò´¹Ö±ÓÚOQбÏòÓÒÏ£¬N¡¢PÁ½µã¶Ô³Æ£¬ÒªAÇ¡Äܵ½´ïPµãÖ»ÐèA¸Õµ½´ïNµã¼´¿É£¬Óɶ¯Äܶ¨ÀíÇó½â£®
£¨3£©µ±AÓÉP»¬»ØNµãʱ£¬ÂåÂ××ÈÁ¦Ö¸ÏòOµã£¬A¿ÉÄÜÀ뿪¹ìµÀ£®Óɶ¯Äܶ¨ÀíºÍÄÜÁ¿Êغ㶨ÂÉ£¬½áºÏÊýѧ֪ʶÇó½â£®

½â´ð ½â£º£¨1£©Í¨¹ý¡°ÅÚµ¯¡±µÄ»ØÂ·µÄµçÁ÷Ϊ I=$\frac{E}{R+r}$
¶ÔC£¬Óɶ¯Äܶ¨ÀíµÃ
   F°²L=$\frac{1}{2}•2m{v}_{0}^{2}$
ÓÖ F°²=B0Id
ÁªÁ¢½âµÃ v0=$\sqrt{\frac{{B}_{0}Edl}{£¨R+r£©m}}$£®
£¨2£©A¡¢C¼äÍêÈ«µ¯ÐÔÅöײ£¬È¡ÏòÓÒΪÕý·½Ïò£¬Óɶ¯Á¿Êغ㶨ÂɺͶ¯ÄÜÊØºãµÃ£º
  2mv0=mvA+2mvC£®
  $\frac{1}{2}•$2mv02=$\frac{1}{2}•$mvA2+$\frac{1}{2}•$2mvC2£®
ÁªÁ¢½âµÃ£ºvA=$\frac{4}{3}{v}_{0}$=$\frac{4}{3}$$\sqrt{\frac{{B}_{0}Edl}{£¨R+r£©m}}$£®vC=$\frac{1}{3}{v}_{0}$=$\frac{1}{3}$$\sqrt{\frac{{B}_{0}Edl}{£¨R+r£©m}}$£®
AÔÚNN¡äÓÒ²àÊܵ½µÄµç³¡Á¦ F=qE=q$\frac{mg}{q}$=mg
ÖØÁ¦ºÍµç³¡Á¦µÄºÏÁ¦´óСΪ FºÏ=$\sqrt{2}$mg£¬·½Ïò´¹Ö±ÓÚOQбÏòÓÒÏ£¬N¡¢PÁ½µã¶Ô³Æ£¬ÒªAÇ¡Äܵ½´ïPµãÖ»ÐèA¸Õµ½´ïNµã¼´¿É£¬ÉèĦ²ÁÒòÊýΪ¦Ì£¬C¾²Ö¹Ê±ÓëMµãµÄ¾àÀëΪlx£¬ÓÐ
   ¦ÌmgL=$\frac{1}{2}m{v}_{A}^{2}$
  ¦Ì•mglx=$\frac{1}{2}•2m{v}_{C}^{2}$
ÁªÁ¢½âµÃ lx=$\frac{L}{16}$£®

£¨3£©µ±AÓÉP»¬»ØNµãʱ£¬ÂåÂ××ÈÁ¦Ö¸ÏòOµã£¬A¿ÉÄÜÀ뿪¹ìµÀ£®ÉèAÏà¶ÔOPת¶¯¦È½Çʱ£¬ÆäËÙ¶ÈΪv£¬¶Ô¹ìµÀµÄѹÁ¦ÎªFN£¬ÓÐ
   FN+qvB-mgsin¦È-qEcos¦È=m$\frac{{v}^{2}}{a}$
ÓÉÄÜÁ¿ÊغãµÃ  mgasin¦È-qEa£¨1-cos¦È£©=$\frac{1}{2}m{v}^{2}$
ҪʹµÃA²»À뿪¹ìµÀ£¬ÐëµÃ FN¡Ý0£®ÁªÁ¢½âµÃ B¡Ü$\frac{m\sqrt{g}£¨3sin¦È+3cos¦È-2£©}{q\sqrt{2a}\sqrt{£¨sin¦È+cos¦È-1£©}}$
ÒòΪ f£¨¦È£©=$\frac{3sin¦È+3cos¦È-2}{\sqrt{sin¦È+cos¦È-1}}$=3$\sqrt{sin¦È+cos¦È-1}$+$\frac{1}{\sqrt{sin¦È+cos¦È-1}}$
µ±3$\sqrt{sin¦È+cos¦È-1}$=$\frac{1}{\sqrt{sin¦È+cos¦È-1}}$ʱ£¬¼´sin¦È+cos¦È=$\frac{4}{3}$ʱ£¬f£¨¦È£©=f£¨¦È£©min=2$\sqrt{3}$
¹ÊB¡Ü$\frac{m\sqrt{g}}{q\sqrt{2a}}$¡Á2$\sqrt{3}$=$\frac{m}{q}$$\sqrt{\frac{6g}{a}}$=Bmax£®
¿¼Âǵ½¼«ÖµµãÒªÇósin¦È+cos¦È=$\frac{4}{3}$£¬±äÐοɵà 1£¾sin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\frac{4}{3}}{\sqrt{2}}$£¾$\frac{1}{\sqrt{2}}$=sin$\frac{¦Ð}{4}$£¬¿ÉÖª¦ÈÔÚ[0£¬¦Ð/4]·¶Î§ÄÚÓн⣬˵Ã÷ÉÏÃæÌÖÂÛÊǺÏÀíµÄ£¬¼´BµÄȡֵӦÂú×ãµÄÌõ¼þÊÇ£º
  B¡ÜBmax=$\frac{m}{q}$$\sqrt{\frac{6g}{a}}$£®
´ð£º
£¨1£©CÓëAÅöײǰµÄËÙ¶Èv0µÄ´óСΪ$\sqrt{\frac{{B}_{0}Edl}{£¨R+r£©m}}$£»
£¨2£©ÉèA¡¢CµÄÅöײΪµ¯ÐÔÅöײ£¬A¡¢CÓëMN¹ìµÀµÄ»¬¶¯Ä¦²ÁÒòÊýÏàͬ£¬ÈôÅöºóAÇ¡Äܵ½´ïPµã£¬C×îÖÕֹͣλÖõ½MµãµÄ¾àÀëÊÇ$\frac{L}{16}$£»
£¨3£©ÉèÅöºóAÇ¡Äܵ½´ïPµã£¬ÈôÒªÇóAÔ˶¯Ê±Ê¼ÖÕ²»À뿪Բ»¡¹ìµÀ£¬ONO¡äPÇøÓòÄڴų¡µÄ´Å¸ÐӦǿ¶ÈBÓ¦Âú×ãµÄÌõ¼þÊÇB¡Ü$\frac{m}{q}$$\sqrt{\frac{6g}{a}}$£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÒª·ÖÎöÇå³þÎïÌåÔ˶¯¹ý³Ì£¬ÔËÓÃÊýѧ֪ʶÇó¼«Öµ£®·Ö¶ÎÓ¦Óö¯Äܶ¨Àí¡¢Å£¶ÙµÚ¶þ¶¨ÂɺÍÄÜÁ¿Êغ㶨ÂɽøÐÐÑо¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø