ÌâÄ¿ÄÚÈÝ
19£®£¨1£©Ð¡ÇòÔÚC´¦Ê±µÄËÙ¶È£»
£¨2£©µç³¡Ç¿¶ÈEµÄ´óС£»
£¨3£©Ð¡ÇòÔÚÔ²¹ìµÀÉÏÔ˶¯Ê±¶Ô¹ìµÀµÄ×î´óѹÁ¦£®
·ÖÎö £¨1£©ÀûÓÃСÇò×öƽÅ×Ô˶¯£¬¾ÝƽÅ×Ô˶¯Ë®Æ½·½ÏòµÄÔÈËÙºÍÊúÖ±·½ÏòµÄ×ÔÓÉÂäÌåÔ˶¯Çó½â ¼´¿É£®
£¨2£©´ÓAµ½CÀûÓö¯Äܶ¨ÀíÇó½â ¼´¿É£®
£¨3£©´ÓСÇòÊܵ½ÖØÁ¦ºÍµç³¡Á¦µÄºÏÁ¦·ÖÎö´¦Ð¡ÇòÔÚ¹ìµÀÉϵÄ×î´óѹÁ¦£¬ÀûÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©´ÓCµ½PСÇò×öƽÅ×Ô˶¯
ËùÒÔ£ºR=$\frac{1}{2}g{t}^{2}$
2R=vct
ÁªÁ¢ÒÔÉϽâµÃ£ºvc=$\sqrt{2gR}$
£¨2£©´ÓAµ½CÓж¯Äܶ¨Àí£º
qE•3R-mg•2R=$\frac{1}{2}mv_c^2$-0
ËùÒÔ£º$E=\frac{mg}{q}$
£¨3£©ÓÉÓÚqE=mgËùÒÔÔÚСÇòÔ˶¯µ½ÈçͼËùʾ¦È=45¡ãʱ¶Ô¹ìµÀѹÁ¦×î´ó£¬
Èô´ËʱµÄ¹ìµÀ¶ÔСÇòµÄÖ§³ÖÁ¦ÎªN£¬Ôò ![]()
¾Ý¶¯Äܶ¨ÀíµÃ£ºqE£¨2R+Rsin¦È£©-mg£¨1-cos¦È£©=$\frac{1}{2}m{v^2}$-0
¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵãºN-qEsin¦È-mgcos¦È=$\frac{{m{v^2}}}{R}$
ÁªÁ¢ÒÔÉϽâµÃ£º$N=£¨2+3\sqrt{2}£©mg$
ËùÒÔСÇò¶Ô¹ìµÀµÄ×î´óѹÁ¦Îª$£¨2+3\sqrt{2}£©mg$
´ð£º1£©Ð¡ÇòÔÚC´¦Ê±µÄËÙ¶È$\sqrt{2gR}$£»
£¨2£©µç³¡Ç¿¶ÈEµÄ´óС$\frac{mg}{q}$£»
£¨3£©Ð¡ÇòÔÚÔ²¹ìµÀÉÏÔ˶¯Ê±¶Ô¹ìµÀµÄ×î´óѹÁ¦£¨2+$3\sqrt{2}$£©mg£®
µãÆÀ Ã÷ȷСÇòµÄÊÜÁ¦ºÍÔ˶¯·ÖÎöÊǽâÌâµÄ¹Ø¼ü£¬Áé»îÓ¦Óö¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨ÂÉÊǽâÌâµÄ¹Ø¼ü£¬ÌâÄ¿×ÛºÏÐÔ½ÏÇ¿£®
| A£® | ·ÉÐÐÊÔÑéÆ÷ÈÆÔÂÇòÔËÐеÄÖÜÆÚΪ2¦Ð$\sqrt{\frac{R}{g}}$ | |
| B£® | ÔÚ·ÉÐÐÊÔÑéÆ÷µÄ¹¤×÷¹ìµÀ´¦µÄÖØÁ¦¼ÓËÙ¶ÈΪ£¨$\frac{R}{R+h}$£©2g | |
| C£® | ·ÉÐÐÊÔÑéÆ÷ÔÚ¹¤×÷¹ìµÀÉϵÄÈÆÐÐËÙ¶ÈΪ$\sqrt{g£¨R+h£©}$ | |
| D£® | ÓÉÌâÄ¿Ìõ¼þ¿ÉÖªÔÂÇòµÄƽ¾ùÃܶÈΪ$\frac{3g}{4¦ÐGR}$ |
| A£® | aÇòµÄÖÊÁ¿Ð¡ÓÚbÇòµÄÖÊÁ¿ | |
| B£® | t1ʱ¿ÌÁ½Çò¼ä¾à×îС | |
| C£® | 0¡«t2ÄÚÁ½Çò¼ä¾àÖð½¥¼õС£¬t2¡«t4ÄÚÁ½Çò¼ä¾àÖð½¥Ôö´ó | |
| D£® | t2¡«t3ÄÚÁ½ÇòµÄÎ»ÒÆ²îСÓÚL |
| A£® | F | B£® | 2F | C£® | $\frac{F}{2}$ | D£® | $\frac{F}{4}$ |
| A£® | µãµçºÉËù´øµÄµçºÉÁ¿Ò»¶¨ÊÇ1.6¡Á10-19C | |
| B£® | µãµçºÉÊÇÖ¸µç×Ó¡¢ÖÊ×ÓÕâЩ΢¹ÛÁ£×Ó | |
| C£® | µãµçºÉÊÇÀíÏëÄ£ÐÍ | |
| D£® | µãµçºÉÊÇÖ¸µçºÉÁ¿ºÜСµÄ´øµçÌå |
| A£® | ˮƽÀÁ¦¿ÉÄÜÊÇ0.3 N | B£® | ˮƽÀÁ¦Ò»¶¨ÊÇ0.1 N | ||
| C£® | ÎïÌåËùÊÜĦ²ÁÁ¦Ò»¶¨ÊÇ0.1N | D£® | ÎïÌåËùÊÜĦ²ÁÁ¦Ò»¶¨ÊÇ0.2 N |