ÌâÄ¿ÄÚÈÝ
2£®| A£® | a1=3a2 | B£® | a2=3a1 | C£® | P=FV | D£® | P=2FV |
·ÖÎö ·ÖÎöÇå³þÁ½ÖÖÇé¿öϵÄÔ˶¯ÐÎÊ½Çø±ð£¬È»ºó¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹æÂÉÇó½â£¬×¢ÒâÁ½ÖÖÇé¿öϵ¼Ìå°ô×îÖÕÔÈËÙÔ˶¯Ê±ËùÊÜÀÁ¦´óСÊÇÏàͬµÄ£®
½â´ð ½â£ºAB¡¢ÓÉÓÚÁ½ÖÖÇé¿öÏ£¬×îÖÕ°ô¶¼ÒÔËÙ¶È2vÔÈËÙÔ˶¯£¬´ËʱÀÁ¦Óë°²ÅàÁ¦´óСÏàµÈ£¬ÔòÓУº
F=F°²=BIL=$\frac{2{B}^{2}{L}^{2}v}{R}$£¬
µ±ÀÁ¦ºã¶¨£¬ËÙ¶ÈΪv£¬¼ÓËÙ¶ÈΪa1ʱ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºF-$\frac{{B}^{2}{L}^{2}v}{R}$=ma1
½âµÃ£ºa1=$\frac{{B}^{2}{L}^{2}v}{mR}$£®
Èô±£³ÖÀÁ¦µÄ¹¦Âʺ㶨£¬ËÙ¶ÈΪ2vʱ£¬ÀÁ¦ÎªF£¬ÔòÓУºP=F•2v£¬
ÓÖF=F°²=$\frac{2{B}^{2}{L}^{2}v}{R}$µÃ£ºP=$\frac{4{B}^{2}{L}^{2}{v}^{2}}{R}$£¬
Ôòµ±ËÙ¶ÈΪvʱ£¬ÀÁ¦´óСΪ£ºF1=$\frac{P}{v}$=$\frac{4{B}^{2}{L}^{2}v}{R}$£»
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵãºF1-$\frac{{B}^{2}{L}^{2}v}{R}$=ma2£¬
½âµÃ£ºa2=$\frac{3{B}^{2}{L}^{2}v}{mR}$£¬
ËùÒÔÓÐa2=3a1£¬¹ÊA´íÎó£¬BÕýÈ·£»
CD¡¢Èô±£³ÖÀÁ¦µÄ¹¦ÂÊPºã¶¨£¬ËÙ¶ÈΪ2vʱ£¬ÀÁ¦Ò²ÎªF£¬ÔòÓУºP=F•2v£¬¹ÊC´íÎó¡¢DÕýÈ·£»
¹ÊÑ¡£ºBD£®
µãÆÀ ±¾Ìâ¿ÉÒԺͻú³µÆô¶¯µÄÁ½ÖÖ·½Ê½½øÐÐÀà±È½â´ð£¬Ö»²»¹ý»ú³µÆô¶¯Ê±×èÁ¦²»±ä£¬¶ø¸ÃÌâÖÐ×èÁ¦Îª°²ÅàÁ¦£¬ÊDz»¶Ï±ä»¯µÄ£®
| A£® | Å£¶Ù×îÔçÖ¸³öÁ¦²»ÊÇά³ÖÎïÌåÔ˶¯µÄÔÒò | |
| B£® | Ù¤ÀûÂÔÌá³öÁËÍòÓÐÒýÁ¦¶¨ÂÉ | |
| C£® | ¿ªÆÕÀÕ×ܽá¹éÄÉÁËÐÐÐÇÔ˶¯¶¨ÂÉ£¬´Ó¶øÌá³öÁËÈÕÐÄ˵ | |
| D£® | ¿¨ÎĵÏÐí²â³öÁËÒýÁ¦³£Á¿ |
| A£® | ÎïÌåAËæµØÇò×ÔתµÄ½ÇËÙ¶È´óÓÚÎÀÐÇBµÄ½ÇËÙ¶È | |
| B£® | ÎÀÐÇBµÄÏßËÙ¶ÈСÓÚÎÀÐÇCµÄÏßËÙ¶È | |
| C£® | ÎïÌåAËæµØÇò×ÔתµÄÖÜÆÚ´óÓÚÎÀÐÇCµÄÖÜÆÚ | |
| D£® | ÎïÌåAËæµØÇò×ÔתµÄÏòÐļÓËÙ¶ÈСÓÚÎÀÐÇCµÄÏòÐļÓËÙ¶È |
| A£® | µçÔ´µÄÊä³ö¹¦ÂÊÒ»¶¨±äС | |
| B£® | µçѹ±íV1µÄ¶ÁÊý±äС£¬µçÁ÷±íA1µÄ¶ÁÊý±äС | |
| C£® | µçѹ±íV2µÄ¶ÁÊý±ä´ó£¬µçÁ÷±íA2µÄ¶ÁÊý±äС | |
| D£® | µçѹ±íV2µÄ¶ÁÊý±äС£¬µçÁ÷±íA2µÄ¶ÁÊý±äС |