ÌâÄ¿ÄÚÈÝ
11£®£¨1£©µ±µç³¡Ç¿¶ÈE0=2¡Á105N/Cʱ£¬ÇóÄܹ»ñÊSOÁ¬Ïß´©¹ý¿×OµÄÀë×ÓµÄËÙÂÊv£»
£¨2£©µç³¡Ç¿¶ÈȡֵÔÚÒ»¶¨·¶Î§ÄÚʱ£¬¿ÉÊ¹ÑØsoÁ¬Ïß´©¹ýO²¢½øÈë´Å³¡ÇøÓòµÄÀë×ÓÖ±½Ó´Óbc±ßÉä³ö£¬ÇóÂú×ãÌõ¼þµÄµç³¡Ç¿¶È×î´óÖµE1¼°ÔÚ´ËÖÖÇé¿öÏ£¬Àë×ÓÔڴų¡ÇøÓòÔ˶¯µÄʱ¼ät£»
£¨3£©Ôڵ糡ǿ¶ÈÈ¡µÚ£¨2£©ÎÊÖÐÂú×ãÌõ¼þµÄ×îСֵµÄÇé¿öÏ£¬½ôÌù´Å³¡±ßÔµcdµÄÄڲ࣬´ÓcµãÑØcd·½ÏòÈëÉäÒ»µçºÉÁ¿·ÖҲΪq¡¢ÖÊÁ¿Ò²Îªm£¬µÄ´øÕýµçÀë×Ó£¬Òª±£Ö¤´Å³¡ÖÐÄܹ»·¢ÉúÕý¡¢¸ºÀë×ÓµÄÏàÏòÕýÅö£¨ÅöײʱÁ½Àë×ÓµÄËÙ¶È·½ÏòÇ¡ºÃÏà·´£©£¬Çó¸ÃÕýÀë×ÓÈëÉäµÄËÙÂÊv£®
·ÖÎö £¨1£©ÓÉÆ½ºâÌõ¼þ¿ÉÒÔÇó³öÀë×ÓËÙ¶È£®
£¨2£©×÷³öÁ£×ÓÔ˶¯¹ì¼££¬ÓÉÆ½ºâÌõ¼þ¡¢Å£¶ÙµÚ¶þ¶¨ÂÉÇó³öµç³¡Ç¿¶È£®
£¨3£©¸ù¾Ý¼¸ºÎ֪ʶÇó³öÀë×Ó¹ìµÀ°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÀë×ÓËÙÂÊ£®
½â´ð ½â£º£¨1£©ÄÜ´©¹ýËÙ¶ÈÑ¡ÔñÆ÷µÄÀë×ÓÂåÂ××ÈÁ¦Óëµç³¡Á¦ÏàµÈ£¬
¼´£ºqv0B=qE£¬
´úÈëÊý¾Ý½âµÃ£ºv0=4¡Á105m/s£»
£¨2£©´©¹ýO¿×µÄÀë×ÓÂú×㣺qvB=qE£¬
Àë×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqvB=m$\frac{{v}^{2}}{r}$£¬
½âµÃ£ºE=$\frac{q{B}^{2}r}{m}$£¬
´Óbc±ßÉä³öµÄÀë×ÓÆäÁÙ½ç¹ì¼£ÈçͼÖТ٢ÚËùʾ£º![]()
¶ÔÓÚÓë¹ì¼£¢Ù£¬°ë¾¶×î´ó£¬¶ÔÓ¦µÄµç³¡Ç¿¶ÈÖµ×î´ó£¬
¸ù¾Ýͼʾ¹ì¼£¢Ù£¬Óɼ¸ºÎ֪ʶ¿ÉµÃ£ºr1=$\frac{L}{2}$=1m£¬
½âµÃ£ºE1max=1.25¡Á106N/C£»
Óɼ¸ºÎ֪ʶ¿ÉÖª£¬sin¦È=$\frac{L-\frac{L}{4}-{r}_{1}}{{r}_{1}}$£¬sin¦È=$\frac{1}{2}$£¬
Ôò£º¦È=30¡ã£¬
Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£ºT=$\frac{2¦Ðm}{qB}$£¬
Á£×ÓÔڴų¡ÖеÄÔÈËÙʱ¼ä£ºt=$\frac{90¡ã+30¡ã}{360¡ã}$T=$\frac{1}{3}$T=$\frac{8¦Ð}{3}$¡Á10-7s£»
£¨3£©µ±EÈ¡×îСֵʱ£¬Àë×ӹ켣ÈçÉÏͼ¢ÚËùʾ£¬
¸ù¾ÝͼʾÓɼ¸ºÎ֪ʶ¿ÉµÃ£ºr2=$\frac{L-\frac{L}{4}}{2}$£¬
½âµÃ£ºr2=0.075m£¬
Àë×Ó·¢ÉúÕýÅö£¬Á½Àë×ӹ켣½«ÄÚÇУ¬ÈçͼËùʾ£º![]()
Éè´ÓC½øÈë´Å³¡µÄÀë×Ó¹ìµÀ°ë¾¶Îªr¡ä£¬ËÙÂÊΪv¡ä£¬
Óɼ¸ºÎ֪ʶµÃ£º£¨r¡ä-r2£©2=r22+£¨r¡ä-$\frac{L}{2}$£©2£¬
½«L¡¢r2´úÈë½âµÃ£ºr¡ä=0.2m£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv¡äB=q$\frac{v{¡ä}^{2}}{r¡ä}$£¬
´úÈëÊý¾Ý½âµÃ£ºv¡ä=5¡Á105m/s£»
´ð£º£¨l£©µ±µç³¡Ç¿¶ÈE0=2¡Á105N/Cʱ£¬Äܹ»ÑØSOÁ¬Ïß´©¹ý¿×OµÄÀë×ÓµÄËÙÂÊΪ4¡Á105m/s£»
£¨2£©Âú×ãÌõ¼þµÄµç³¡Ç¿¶È×î´óֵΪ1.25¡Á106N/C£¬Àë×ÓÔڴų¡ÇøÓòÔ˶¯µÄʱ¼äΪ$\frac{8¦Ð}{3}$¡Á10-7s£»
£¨3£©¸ÃÕýÀë×ÓÈëÉäµÄËÙÂÊΪ5¡Á105m/s£®
µãÆÀ ±¾Ì⿼²éÁËÇóÀë×ÓµÄËÙÂÊ¡¢µç³¡Ç¿¶È£¬·ÖÎöÇå³þÀë×ÓÔ˶¯¹ý³Ì¡¢Ó¦ÓÃÆ½ºâÌõ¼þ¡¢Å£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÕýÈ·½âÌ⣬·ÖÎöÇå³þÀë×ÓÔ˶¯¹ý³Ì¡¢×÷³öÆäÔ˶¯¹ì¼£ÊÇÕýÈ·½âÌâÌâµÄǰÌáÓë¹Ø¼ü£®
| A£® | b¡¢dÁ½µãµÄµç³¡Ç¿¶ÈÏàͬ | |
| B£® | ½«µãµçºÉ+qÔÚÇòÃæÉÏÈÎÒâÁ½µãÖ®¼äÒÆ¶¯£¬´ÓaµãÒÆ¶¯µ½cµãµçÊÆÄܵı仯Á¿Ò»¶¨×î´ó | |
| C£® | µãµçºÉÔÚÇòÃæÉÏÈÎÒâÁ½µãÖ®¼äÒÆ¶¯Ê±£¬µç³¡Á¦Ò»¶¨×ö¹¦ | |
| D£® | µãµçºÉÔÚaµãµÄµçÊÆÄÜÒ»¶¨´óÓÚÔÚfµãµÄµçÊÆÄÜ |
| A£® | tlʱ¿Ì£¬µ¯»ÉÐαäÁ¿Îª$\frac{2mgsin¦È+ma}{k}$ | |
| B£® | t2ʱ¿Ì£¬µ¯»ÉÐαäÁ¿Îª$\frac{mgsin¦È}{k}$ | |
| C£® | tlʱ¿Ì£¬A£¬B¸Õ·ÖÀëʱµÄËÙ¶ÈΪ$\sqrt{\frac{a£¨mgsin¦È-ma£©}{k}}$ | |
| D£® | ´Ó¿ªÊ¼µ½t2ʱ¿Ì£¬ÀÁ¦FÏÈÖð½¥Ôö´óºó²»±ä |
| A£® | A¡¢BÁ½ÎïÌåÔ˶¯·½ÏòÒ»¶¨Ïà·´ | B£® | ǰ4s A¡¢BÁ½ÎïÌåµÄÎ»ÒÆÏàͬ | ||
| C£® | t=4sʱ£¬A¡¢BÁ½ÎïÌåµÄËÙ¶ÈÏàͬ | D£® | AÎïÌåµÄ¼ÓËٶȱÈBÎïÌåµÄ¼ÓËÙ¶È´ó |
| A£® | AµãµÄµç³¡Ç¿¶È·½ÏòÏòÓÒ | B£® | AµãµÄµç³¡Ç¿¶È·½ÏòÏò×ó | ||
| C£® | ÕýµãµçºÉÔÚAµãÊÜÁ¦ÏòÓÒ | D£® | ¸ºµãµçºÉÔÚAµãÊÜÁ¦ÏòÓÒ |