题目内容

1.如图所示,MN是磁感应强度大小为B的匀强磁场的边界,一带电微粒在纸面内从O点射入磁场,射入时微粒的速度大小为v0,改变v0的方向,微粒最远能落到边界上的C点,不计微粒的重力作用,则(  )
A.落在C点时的速度方向垂直于MN
B.落在C点时的速度大于v0
C.若增大v0,则微粒一定落在C点的右侧
D.若减小v0,则微粒一定落在C点的左侧

分析 不计重力的情况下带电粒子进入磁场,在洛伦兹力作用下做匀速圆周运动,根据圆周运动的特点展开讨论即可.

解答 解:A、因为微粒从O点开始垂直进入磁场,进入磁场后微粒做匀速圆周运动,运动的半径:$r=\frac{m{v}_{0}}{qB}$粒子的速度相等,所以半径是相等的,微粒运动的最远距离是该运动轨迹的直径,微粒最远能落到边界上的C点,根据几何关系可知OC是运动轨迹最远时的直径,所以微粒离开磁场时速度方向与MN垂直,故A正确.
B、因为微粒在磁场中做匀速圆周运动,故落在C点时的速度大小vC=v0,故B错误;
C、微粒在磁场中做匀速圆周运动,洛伦兹力提供万有引力$qvB=m\frac{{v}^{2}}{R}$得:$R=\frac{mv}{qB}$,微粒速度增大,运动轨迹的半径增大,微粒可能会打在C点右侧,也可能打在C左侧的A点,故C错误;
D、若减小v0,运动轨迹的半径增减小,则微粒一定落在C点的左侧,故D正确.
故选:AD.

点评 抓住微粒在磁场中做匀速圆周运动,洛伦兹力提供向心力可以得到微粒圆周运动的半径、周期的表达式,根据表达式进行判断即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网