ÌâÄ¿ÄÚÈÝ
10£®£¨1£©Àë×Óµ½´ïÏÁ·ìS1µÄËÙ¶È´óС£»
£¨2£©¾²µç·ÖÎöÆ÷ÖеÈÊÆÏßAÉϸ÷µãµÄµç³¡Ç¿¶ÈEµÄ´óС£»
£¨3£©Àë×ÓÀ뿪´Å³¡µÄλÖã®
·ÖÎö £¨1£©¸ù¾Ý¶¯Äܶ¨ÀíÇóµÃÀ뿪s1µÄËÙ¶È£»
£¨2£©µç³¡Á¦ÌṩÁ£×Ó×÷Ô²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÃ
£¨3£©Àë×ÓÔڴų¡ÖÐÂåÂ××ÈÁ¦Ìṩ×÷Ô²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬¸ù¾Ý¼¸ºÎ¹ØÏµÇóµÃ¼´¿É
½â´ð ½â£º£¨1£©Óж¯Äܶ¨Àí¿ÉÖª$qU=\frac{1}{2}m{v}^{2}$
½âµÃv=$\sqrt{\frac{2qU}{m}}$
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ$qE=\frac{m{v}^{2}}{\frac{d}{2}}$
½âµÃE=$\frac{2m{v}^{2}}{qd}=\frac{4U}{d}$
£¨3£©ÓÐqvB=$\frac{m{v}^{2}}{r¡ä}$µÃr¡ä=d
¹ì¼£ÈçÓÒͼËùʾ![]()
¸ù¾Ý¹´¹É¶¨Àí$£¨r¡ä£©^{2}=£¨r¡ä-\frac{d}{2}£©^{2}+{x}^{2}$
½âµÃx=$\frac{\sqrt{3}d}{2}$
ËùÒÔÀë×Ó´ÓMN±ß¾àMµã$\frac{\sqrt{3}d}{2}$λÖÃÀ뿪
´ð£º£¨1£©Àë×Óµ½´ïÏÁ·ìS1µÄËÙ¶È´óСΪ$\sqrt{\frac{2qU}{m}}$£»
£¨2£©¾²µç·ÖÎöÆ÷ÖеÈÊÆÏßAÉϸ÷µãµÄµç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{4U}{d}$£»
£¨3£©Àë×ÓÀ뿪´Å³¡µÄλÖÃΪ$\frac{\sqrt{3}d}{2}$£®
µãÆÀ Á˽âÑо¿¶ÔÏóµÄÔ˶¯¹ý³ÌÊǽâ¾öÎÊÌâµÄǰÌᣬ¸ù¾ÝÌâÄ¿ÒÑÖªÌõ¼þºÍÇó½âµÄÎïÀíÁ¿Ñ¡ÔñÎïÀí¹æÂɽâ¾öÎÊÌ⣮
ÕÒ³öÔ²ÖÜÔ˶¯ËùÐèµÄÏòÐÄÁ¦£¬ÁгöµÈʽ½â¾öÎÊÌ⣮
| A£® | µçѹ±íV2µÄʾÊýΪ9V | |
| B£® | ÔÏßȦÁ½¶ËµçѹµÄ˲ʱֵ±í´ïʽΪu=36$\sqrt{2}$sin50¦Ðt£¨V£© | |
| C£® | R1´¦Î¶ÈÉý¸ßʱ£¬µçÁ÷±íµÄʾÊý±ä´ó£¬µçѹ±íV2µÄʾÊý²»±ä | |
| D£® | ±äѹÆ÷ÔÏßȦµÄÊäÈ빦Âʺ͸±ÏßȦµÄÊä³ö¹¦ÂÊÖ®±ÈΪ1£º4 |
| A£® | mgtan¦Á | B£® | mgcot¦Á | C£® | $\frac{mg}{2sin¦Á}$ | D£® | $\frac{mg}{2cos¦Á}$ |