ÌâÄ¿ÄÚÈÝ
7£®| A£® | ¸ÃÁ£×Ó´øÕýµç | |
| B£® | ¸ÃÁ£×Ó´ø¸ºµç | |
| C£® | Èô³·È¥´Å³¡£¬ÔòÁ£×Ó½«´òµ½PQµÄÖеã | |
| D£® | Èô³·È¥´Å³¡£¬ÔòÁ£×ÓÉä³ö½ðÊô°åʱµÄËÙ¶È´óСÊÇÉäÈ˽ðÊô°åʱµÄËÙ¶È´óСµÄ$\sqrt{5}$±¶ |
·ÖÎö Á£×ÓÑØÖ±Ïß´ÓNQµÄÖеãÉä³ö£¬ÂåÂ××ÈÁ¦µÈÓڵ糡Á¦£¬Èô³·È¥µç³¡£¬ÔòÁ£×Ó´ÓMµãÉä³ö£¬ËùÒÔÁ£×ÓÓ¦´øÕýµçºÉ£»Èô³·È¥´Å³¡£¬Ôڴ˹ý³ÌÖУ¬Á£×Ó×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝƽÅ×Ô˶¯¹æÂÉÁÐʽ£®
½â´ð ½â£ºA¡¢³·È¥µç³¡£¬Á£×Ó´ÓMµãÉä³ö£¬Á£×Ó¸ÕÉäÈë´Å³¡Ê±ËùÊÜÂåÂ××ÈÁ¦ÊúÖ±ÏòÉÏ£¬ÓÉ×óÊÖ¶¨ÔòÖªÁ£×Ó´øÕýµçºÉ£¬¹ÊAÕýÈ·£¬B´íÎó£»
C¡¢ÉèÁ£×ÓµÄÖÊÁ¿Îªm£¬´øµçÁ¿Îªq£¬Á£×ÓÉäÈëµç´Å³¡Ê±µÄËÙ¶ÈΪv0£¬ÔòÁ£×ÓÑØÖ±Ïßͨ¹ý³¡ÇøÊ±£ºBqv0=Eq£¬³·È¥µç³¡ºó£¬ÔÚÂåÂØ×ÈÁ¦µÄ×÷ÓÃÏ£¬Á£×Ó×öÔ²ÖÜÔ˶¯£¬Óɼ¸ºÎ֪ʶ֪£ºr=$\frac{d}{2}$£¬ÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B=m$\frac{{v}_{0}^{2}}{r}$£¬³·È¥´Å³¡£¬Á£×Ó×öÀàÆ½Å×Ô˶¯£¬Á£×Ó´òÔÚPQ°åÉÏʱ£¬ÊúÖ±·ÖÎ»ÒÆy=d£¬ÊúÖ±·½Ïò£ºy=d=$\frac{1}{2}$at2=$\frac{1}{2}$$\frac{qE}{m}$t2£¬Ë®Æ½·½£ºx=v0t£¬½âµÃ£ºx=d£¬Á£×Ó½«´òÔÚQµã£¬²»»á´òÔÚPQµÄÖе㣬¹ÊC´íÎó£»
D¡¢ÉèÁ£×ÓµÄÖÊÁ¿Îªm£¬´øµçÁ¿Îªq£¬Á£×ÓÉäÈëµç´Å³¡Ê±µÄËÙ¶ÈΪv0£¬ÔòÁ£×ÓÑØÖ±Ïßͨ¹ý³¡ÇøÊ±£ºBqv0=Eq£¬³·È¥µç³¡ºó£¬ÔÚÂåÂØ×ÈÁ¦µÄ×÷ÓÃÏ£¬Á£×Ó×öÔ²ÖÜÔ˶¯£¬Óɼ¸ºÎ֪ʶ֪£ºr=$\frac{d}{2}$£¬ÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B=m$\frac{{v}_{0}^{2}}{r}$£¬³·È¥´Å³¡£¬Á£×Ó×öÀàÆ½Å×Ô˶¯£¬Á£×ӵļÓËÙÊüa£¬´©Ô½µç³¡ËùÓÃʱ¼äΪt£¬Ë®Æ½·½Ïò£ºd=v0t£¬¼ÓËÙ¶È£ºa=$\frac{qE}{m}$£¬ÊúÖ±·ÖÎ»ÒÆ£ºy=$\frac{1}{2}$at2£¬½âµÃ£ºy=d£¬ÉèÄ©ËÙ¶ÈΪv£¬Óɶ¯Äܶ¨ÀíÖª£º$\frac{1}{2}$mv2-$\frac{1}{2}$mv02=Eqd£¬½âµÃ£ºv=$\sqrt{5}$v0£¬¼´Á£×ÓÉä³ö½ðÊô°åʱµÄËÙ¶È´óСÊÇÉäÈ˽ðÊô°åʱµÄËÙ¶È´óСµÄ$\sqrt{5}$±¶£¬¹ÊDÕýÈ·£»
¹ÊÑ¡£ºAD£®
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڵ糡¡¢´Å³¡ÖÐÁ½µÄÔ˶¯£¬Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬Ôڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬·ÖÎöÇå³þÁ£×ÓÔ˶¯¹ý³ÌÊǽâÌâµÄǰÌᣬ¸ù¾ÝÁ£×ÓÔڴų¡ÖÐµÄÆ«×ª·½ÏòÅжϳöÂåÂ××ÈÁ¦·½Ïò£¬Ó¦ÓÃ×óÊÖ¶¨Ôò¿ÉÒÔÅжϳöÁ£×ӵĵçÐÔ£»Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉÓëÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔ½âÌ⣮
| A£® | Ôö´ó | B£® | ¼õС | C£® | ²»±ä | D£® | ÎÞ·¨ÅÐ¶Ï |
| A£® | ÎïÌå¿Ë·þµç³¡Á¦×ö¹¦qEs | B£® | ÎïÌåµÄµçÊÆÄܼõÉÙÁË0.8qEs | ||
| C£® | ÎïÌåµÄµçÊÆÄÜÔö¼ÓÁËqEs | D£® | ÎïÌåµÄ¶¯ÄܼõÉÙÁË0.8qEs |
| A£® | ÎïÌåÔÚÐ±Ãæµ×¶ËµÄ¶¯ÄÜ | B£® | ´Ë¹ý³ÌÖÐÖØÁ¦×öµÄ¹¦ | ||
| C£® | ´Ë¹ý³ÌÖÐĦ²ÁÁ¦×öµÄ¹¦ | D£® | ÖØÁ¦µÄƽ¾ù¹¦ÂÊ |