题目内容

4.如图所示,BC是半径为R的竖直面内的圆弧轨道,轨道末端C在圆心O的正下方,∠BOC=60°,将质量为m的小球,从与O等高的A点水平抛出,小球恰好从B点沿圆弧切线方向进入圆轨道,由于小球与圆弧之间有摩擦,能够使小球从B到C做匀速圆周运动.重力加速度大小为g.则(  )
A.从B到C,小球克服摩擦力做功为$\frac{1}{2}$mgR
B.从B到C,小球与轨道之间的动摩擦因数可能保持不变
C.A、B两点间的距离为$\sqrt{\frac{7}{12}}$R
D.在C点,小球对轨道的压力为$\frac{10}{3}$mg

分析 小球进入轨道前做平抛运动,应用平抛运动规律可以求出小球的初速度、小球的水平与竖直位移,从而求出A、B两点的距离,由牛顿第二定律与牛顿第三定律可以求出小球对轨道的压力.

解答 解:小球做从A到B做平抛运动,在B点,小球速度方向偏角θ=60°,
则$tan60°=\frac{{v}_{y}}{{v}_{A}}$,vy=gt
竖直方向的位移y=Rcos60°=$\frac{1}{2}g{t}^{2}$
水平方向的位移x=vAt
解得x=$\frac{\sqrt{3}}{3}R$
则A、B两点的距离${x}_{AB}=\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{\frac{7}{12}}R$,C正确;
在B点时小球的速度$v=\sqrt{{v}_{A}^{2}+{v}_{y}^{2}}$=$\frac{2\sqrt{3gR}}{3}$
小球从B到C做匀速圆周运动,则由能量守恒定律可知
小球克服摩擦力做的功等于重力做的功${W}_{G}=mg(R-Rcos60°)=\frac{1}{2}mgR$,A正确;
从B到C,小球对轨道的压力是变化的,而小球仍能保持匀速圆周运动,则小球与轨道之间的动摩擦因数是变化的,B错误;
在C点,轨道对小球的支持力设为FN
则有${F}_{N}-mg=m\frac{{v}^{2}}{R}$
解得FN=$\frac{7}{3}mg$,由牛顿第三定律可知,在C点小球对轨道的压力也为$\frac{7}{3}mg$,故D错误;
故选:AC.

点评 本题考查了平抛运动和圆周运动,分析清楚小球运动过程、应用运动的合成与分解、运动学公式、牛顿第二定律即可正确解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网