ÌâÄ¿ÄÚÈÝ
14£®ÈçͼËùʾ£¬Á½Æ½ÐнðÊôµ¼¹ì¼ä¾àΪd£¬Ò»¶Ë¿ç½ÓÒ»×î´ó×èֹΪ4rµÄ»¬¶¯±ä×èÆ÷£¬Ò»ÓнçµÄÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB£¬·½Ïò´¹Ö±ÓÚ¹ìµÀËùÔÚÆ½Ã棬һ¸ùµç×èΪrµÄÖ±½ðÊô°ôABÓë¹ìµÀ³É60¡ã·ÅÖã¬ÏÖ½«½ðÊô°ôÒÔÆ½ÐÐÓÚµ¼¹ìµÄºã¶¨ËÙ¶Èv1ÑØ½ðÊô¹ìµÀÉÏ»¬ÐУ¬µ±¿ª¹ØK´ò¿ªÊ±£¬·¢ÏÖÁ½½ðÊôµ¼¹ìÖмäÇÒ´¦Óڴų¡Í⣬ÓÐÒ»¸öÖÊÁ¿Îªm¡¢´ø+qµÄ΢Á£ÕýºÃ´¦ÓÚ¾²Ö¹×´Ì¬£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®£¨1£©Çó½ðÊô°ôÔ˶¯µÄËÙ¶Èv1µÄ´óСÓë·½Ïò£®
£¨2£©Èô°Ñ¿ª¹ØK±ÕºÏ²¢µ÷½Ú»¬¶¯±ä×èÆ÷£¬µ±ËüµÄÓÐЧµç×èΪ3rʱ£¬¸ø´ËÁ£×ÓһˮƽÏòÓÒµÄËÙ¶Èv0£¬Ôò¸ÃÁ£×Ó´ïµ½½ðÊôµ¼¹ìʱËÙ¶Èv2µÄ´óСÓë·½Ïò£¿
£¨3£©Èô°Ñ½ðÊô°ôµÄËٶȵ÷ÕûΪÔÀ´µÄ$\frac{3}{2}$±¶£¬¿ª¹ØK±ÕºÏ²¢°Ñ»¬¶¯±ä×èÆ÷µÄ»¬Æ¬»¬µ½ÖмäλÖã»Ôڴų¡ÖеÄCµã£¨Í¼ÖÐδ»³ö£©¿ÉÏò¸÷¸ö·½Ïò·¢ÉäÖÊÁ¿Îªm¡¢´øµçÁ¿Îª+q¡¢ËÙ¶ÈΪv0µÄÐí¶à΢Á££¬Cµã¾àϽðÊôµ¼¹ì¼ä¾àΪ$\frac{1}{2}$d£¬ÔòҪʹÓÐÁ£×ÓÄÜ´òµ½Ï½ðÊôµ¼¹ìÉÏ£¬Ôòv0Âú×ãµÄÌõ¼þ¼°´òµ½Ï½ðÊôµ¼¹ìµÄ×î¶Ìʱ¼äΪ¶àÉÙ£®
·ÖÎö £¨1£©ÓÉ΢Á£ÊÜÁ¦·ÖÎö£¬µÃµç³¡Ç¿¶È£¬½áºÏ$E=\frac{U}{d}$£¬ÇóµÃµçѹ£¬ÔÙÓɵç´Å¸ÐÓ¦¶¨ÂÉÇóµÃËÙ¶È£¬½áºÏÓÒÊÖ¶¨ÔòÅж¨Ô˶¯·½Ïò£®
£¨2£©±ÕºÏkºó£¬¸ù¾Ý±ÕºÏµç·µÄÅ·Ä·¶¨ÂÉ£¬ÇóµÃµ¼¹ìÖ®¼äµÄµç³¡Ç¿¶È£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÈ·¶¨Á£×ÓÊÜÁ¦Çé¿ö£¬·ÖÎöÔ˶¯ÐÎʽ£¬½áºÏ¹æÂÉÇó½â£¬
£¨3£©Óɵç´Å¸ÐÓ¦¶¨ÂÉÇóµÃµç¶¯ÊÆ£¬ÓÉ$E=\frac{U}{d}$µÃµç³¡Ç¿¶È£¬ÔÙ¶ÔÁ£×ÓÊÜÁ¦·ÖÎö£¬È·¶¨Á£×ÓµÄÔ˶¯ÐÎʽ£¬½áºÏÏàÓ¦¹æÂÉÇó½â£®
½â´ð ½â£º£¨1£©¶Ô΢Á£ÊÜÁ¦·ÖÎö£¬µÃ£ºmg=Eq£¬½âµÃ£º$E=\frac{mg}{q}$£¬µç³¡·½ÏòÏòÉÏ£¬
¸ù¾ÝµçÊÆ²îºÍµç³¡Ç¿¶ÈÖ®¼äµÄ¹ØÏµ£¬$E=\frac{U}{d}$£¬µÃ£º$U=\frac{mgd}{q}$£¬
Óɵç´Å¸ÐÓ¦¶¨ÂɵãºU=BLv1sin60¡ã=$\frac{mgd}{q}$£¬½âµÃ£ºv1=$\frac{mg}{Bq}$
µç³¡·½ÏòÏòÉÏ£¬½ðÊôµ¼¹ìÉÏ¹ì´ø¸ºµç£¬ÓÉÓÒÊÖ¶¨ÔòµÃ£º½ðÊô°ôABÏò×óÔ˶¯£®
£¨2£©Óɵç´Å¸ÐÓ¦¶¨ÂɵãºU=BLv1sin60¡ã=Bdv1£¬
Èô°Ñ¿ª¹ØK±ÕºÏ²¢µ÷½Ú»¬¶¯±ä×èÆ÷£¬µ±ËüµÄÓÐЧµç×èΪ3rʱ£¬
¸ù¾Ý±ÕºÏµç·µÄÅ·Ä·¶¨ÂÉ£¬µÃÁ½¹ìÖ®¼äµÄµçѹ£º${U}_{2}=\frac{U}{3r+r}¡Á3r=\frac{3}{4}U$£¬
¸ù¾ÝµçÊÆ²îºÍµç³¡Ç¿¶ÈÖ®¼äµÄ¹ØÏµ£¬$E=\frac{{U}_{2}}{d}$=$\frac{3U}{4d}$£¬Ôò´Ëʱµç³¡Á¦£ºFµç=$Eq=\frac{3Uq}{4d}$£¬¶øÖØÁ¦£º$mg=\frac{Uq}{d}$£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£ºFºÏ=mg-Fµç=$\frac{Uq}{4d}$=ma£¬½âµÃ£ºa=$\frac{Uq}{4md}$£¬·½ÏòÏòÏ£¬¹ÊÁ£×Ó×öÀàÆ½Å×Ô˶¯£¬
ˮƽ·½Ïò×öÔÈËÙÔ˶¯£¬vx=v0£¬ÊúÖ±·½Ïò×öÔȼÓËÙÔ˶¯£¬ÓÉ£º${v}_{y}^{2}=2ad$£¬¼´£º${v}_{y}^{2}=2a\frac{d}{2}$=$\frac{Uq}{4m}=\frac{gd}{4}$£¬
µ½´ïϹìµÀʱµÄËÙ¶È£º${v}_{ºÏ}=\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}=\sqrt{{v}_{0}^{2}+\frac{Uq}{4m}}$=$\sqrt{{v}_{0}^{2}+\frac{gd}{4}}$£¬Óëˮƽ·½Ïò¼Ð½Ç£º$tg¦È=\frac{{v}_{y}}{{v}_{0}}$=$\frac{\sqrt{gd}}{2{v}_{0}}$
£¨3£©Èô°Ñ½ðÊô°ôµÄËٶȵ÷ÕûΪÔÀ´µÄ$\frac{3}{2}$±¶£¬Óɵç´Å¸ÐÓ¦¶¨ÂɵãºU=BL$\frac{3}{2}$v1sin60¡ã=$\frac{3}{2}$Bdv1£¬
¸ù¾Ý±ÕºÏµç·µÄÅ·Ä·¶¨ÂÉ£¬µÃÁ½¹ìÖ®¼äµÄµçѹ£º${U}_{3}=\frac{U}{2r+r}¡Á2r$=Bdv1£¬
¸ù¾ÝµçÊÆ²îºÍµç³¡Ç¿¶ÈÖ®¼äµÄ¹ØÏµ£¬$E=\frac{{U}_{3}}{d}=B{v}_{1}$£¬Ôò´Ëʱµç³¡Á¦£ºFµç=Eq=Bdv1£¬ÓÉ£¨1£©ÖÐÖª£ºmg=Bdv1£¬¼´Á£×ÓËùÊÜÖØÁ¦ºÍµç³¡Á¦ÏàµÈ£¬ºÏÍâÁ¦FºÏ=Bqv0£¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬Èçͼ£º
£¬
¸ù¾Ý£º$r=\frac{m{v}_{0}}{Bq}$£¬Óɼ¸ºÎ¹ØÏµ£»2r=d£¬½âµÃ£ºr=$\frac{d}{2}$£¬¼´£º$\frac{d}{2}=\frac{m{v}_{0}}{Bq}$£¬½âµÃ£º${v}_{0}=\frac{Bqd}{2m}$£¬
ÓÉÌâÒâ¿ÉÖª£¬µ±Á£×Ó´òÔÚϼ«°åÉϵÄAµãÔÚCµãÕýÏ·½Ê±£¬Ô˶¯Ê±¼ä×î¶Ì£¬Óɼ¸ºÎ¹ØÏµ£¬OA=AC=OC=$\frac{d}{2}$£¬½âµÃ£º¦È=¡ÏAOC=60¡ã£¬¶øÖÜÆÚ£º$T=\frac{2¦Ðm}{Bq}$£¬×î¶Ìʱ¼ä£º$t=\frac{¦È}{2¦Ð}T=\frac{¦Ðm}{3Bq}$£®
´ð£º£¨1£©Çó½ðÊô°ôÔ˶¯µÄËÙ¶Èv1µÄ´óСΪ$\frac{mg}{Bq}$£¬·½Ïò½ðÊô°ôABÏò×óÔ˶¯£®
£¨2£©¸ÃÁ£×Ó´ïµ½½ðÊôµ¼¹ìʱËÙ¶Èv2µÄ´óСΪ$\sqrt{{v}_{0}^{2}+\frac{gd}{4}}$£¬Óëˮƽ·½Ïò¼Ð½Ç£ºtg¦È=$\frac{\sqrt{gd}}{2{v}_{0}}$
£¨3£©ÒªÊ¹ÓÐÁ£×ÓÄÜ´òµ½Ï½ðÊôµ¼¹ìÉÏ£¬Ôòv0¡Ý$\frac{Bqd}{2m}$£¬´òµ½Ï½ðÊôµ¼¹ìµÄ×î¶Ìʱ¼äΪ$\frac{¦Ðm}{3Bq}$£®
µãÆÀ ±¾Ì⿼²éÁ˵ç´Å¸ÐÓ¦ºÍµç³¡Ç¿¶È£¬¼°Á£×ÓÔÚ¸´ºÏ³¡ÖÐÔ˶¯µÄ×ÛºÏÌ⣬ÄѶȽϴó£¬ÌرðÊǵÚÈýÎÊÖÐ×î¶Ìʱ¼ä¼ÆËãʱ£¬¹ì¼£µÄÈ·¶¨ÊÇÖØµãÒ²ÊÇÄѵ㣮
| A£® | ÇúÏßÔ˶¯µÄÎïÌåÊܵ½µÄºÏÍâÁ¦Ò»¶¨²»ÎªÁã | |
| B£® | ×öÇúÏßÔ˶¯µÄÎïÌåµÄ¼ÓËÙ¶ÈÒ»¶¨ÊDZ仯µÄ | |
| C£® | ÎïÌåÔÚºãÁ¦×÷ÓÃÏ£¬²»¿ÉÄÜ×öÇúÏßÔ˶¯ | |
| D£® | Ëٶȱ仯µÄÔ˶¯±Ø¶¨ÊÇÇúÏßÔ˶¯ |
| A£® | rÔö´ó£¬¦Ø¼õС£¬v¼õС | B£® | r²»±ä£¬v±äС£¬¦Ø±äС | ||
| C£® | r¼õС£¬v²»±ä£¬¦ØÔö´ó | D£® | r¼õС£¬¦Ø²»±ä£¬v±äС |
| A£® | 0.8s | B£® | 1.0s | C£® | $\frac{2}{5}$$\sqrt{5}$s | D£® | $\frac{2}{5}$$\sqrt{10}$s |
| A£® | ºìÍâÏß¡¢ÎÞÏߵ粨¡¢×ÏÍâÏß¡¢¿É¼û¹â¡¢¦ÃÉäÏß¡¢XÉäÏß | |
| B£® | ÎÞÏߵ粨¡¢ºìÍâÏß¡¢¿É¼û¹â¡¢XÉäÏß¡¢¦ÃÉäÏß | |
| C£® | ¦ÃÉäÏß¡¢XÉäÏß¡¢×ÏÍâÏß¡¢¿É¼û¹â¡¢ºìÍâÏß¡¢ÎÞÏߵ粨 | |
| D£® | ÎÞÏߵ粨¡¢×ÏÍâÏß¡¢¿É¼û¹â¡¢ºìÍâÏß¡¢XÉäÏß¡¢¦ÃÉäÏß |