ÌâÄ¿ÄÚÈÝ
1£®·ÖÎö ÕÆÎÕ͹͸¾µ³ÉÏñµÄ¹æÂÉ£¬¸ù¾Ý¹â·µÄ¿ÉÄæÐÔ£¬Á½´Î³ÉÏñµÄÎï¾àºÍÏñ¾àÕýºÃÏà·´£¬¼´µÚÒ»´ÎµÄÎï¾àµÈÓÚµÚ¶þ´ÎµÄÏñ¾à£¬µÚÒ»´ÎµÄÏñ¾àµÈÓÚµÚ¶þ´ÎµÄÎï¾à£¬´Ó¶ø¿ÉÒÔ¼ÆËã³ö¾àÀëxµÄÖµ£»
¸ù¾Ý͹͸¾µ³ÉÏñµÄÔÀí£¬ÓɵãS·¢³öµÄ¹â¾¹ý͹͸¾µºó»á¾Ûµ½Ïñµã£¬²¢½áºÏƽÐÐÓÚÖ÷¹âÖáµÄ¹âÏß¹ý½¹µã·ÖÎö½¹¾àµÄ´óС£®
½â´ð ½â£º¸ù¾Ý¹â·µÄ¿ÉÄæÐÔ£¬µÚÒ»´ÎµÄÎï¾àµÈÓÚµÚ¶þ´ÎµÄÏñ¾à£¬µÚÒ»´ÎµÄÏñ¾àµÈÓÚµÚ¶þ´ÎµÄÎï¾à£¬µÚÒ»´ÎµÄÎï¾àu=a+x£»
ԲͲÏòÓÒÒÆ¶¯b£¬Ôò͹͸¾µÒ²»áÏòÓÒÒÆ¶¯b£¬ÔòµÚ¶þ´ÎµÄÏñ¾àΪv¡ä=L-a-x-b£»
Ôòa+x=L-a-x-b£¬½âµÃx=$\frac{L-2a-b}{2}$£»
¹âÔ´SËù³ÉÏñÓ¦ÔÚS¡ä´¦£¬ÈôÎïÌåAS£¬Ôò³ÉÏñӦΪA¡äS¡ä£¬¸ù¾Ý³ÉÏñÔÀí£¬³ÉÏñ¹â·ͼÈçͼËùʾ£º![]()
ÓÖÏñ¸ßÓëÎïÌå¸ß¶ÈÕý±ÈµÈÓÚÏñ¾àÓëÎï¾àÖ®±È£¬Ôò£º
$\frac{A¡äS¡ä}{AS}$=$\frac{L-£¨a+x£©}{a+x}$£»
ÓÉͼ֪£¬¡÷A¡äS¡äF¡×¡÷BOF£¬Ôò£º
$\frac{A¡äS¡ä}{BO}$=$\frac{L-£¨a+x£©-f}{f}$£»
AS=BO£¬x=$\frac{L-2a-b}{2}$£»
ÁªÁ¢ÒÔÉϼ¸Ê½µÃ£¬f=$\frac{{L}^{2}-{b}^{2}}{4L}$£»
¹Ê´ð°¸Îª£º$\frac{L-2a-b}{2}$£»$\frac{{L}^{2}-{b}^{2}}{4L}$£®
µãÆÀ ±¾Ì⿼²éÁË͹͸¾µ³ÉÏñ¹æÂɵÄÌØµã£¬Í¬Ê±¿¼²éÁ˳ÉÏñµÄÔÀí£¬Äܹ»ÕýÈ·»³ö³ÉÏñ¹â·ͼ²¢½áºÏ¼¸ºÎ֪ʶÊǽâ¾ö´ËÌâµÄ¹Ø¼ü£®
| A£® | vmÖ»ÄÜΪ2v£¬Óëa1¡¢a2ÎÞ¹Ø | B£® | vm¿ÉΪÐí¶àÖµ£¬Óëa1¡¢a2µÄ´óСÓÐ¹Ø | ||
| C£® | a1¡¢a2±ØÐëÊÇÒ»¶¨µÄ | D£® | a1¡¢a2±ØÐëÂú×ã$\frac{{a}_{1}{a}_{2}}{{a}_{1}+{a}_{2}}$=$\frac{v}{t}$ |
| A£® | 1sʱ¼×ºÍÒÒÏàÓö | B£® | 2sʱ¼×µÄËÙ¶È·½Ïò·´Ïò | ||
| C£® | 2s¡«6sÄÚ¼×Ïà¶ÔÒÒ×öÔÈËÙÖ±ÏßÔ˶¯ | D£® | 4sʱÒҵļÓËÙ¶ÈΪ0 |
| A£® | ÏÖÓû°Ñ´ËµçÁ÷±í¸Ä×°³ÉÁ¿³ÌΪ0.3AµÄµçÁ÷±í£¬Ó¦²¢ÁªÒ»¸ö4¦¸µÄµç×è | |
| B£® | ÏÖÓû°Ñ´ËµçÁ÷±í¸Ä×°³ÉÁ¿³ÌΪ3AµÄµçÁ÷±í£¬Ó¦²¢ÁªÒ»¸ö0.33¦¸µÄµç×è | |
| C£® | ÏÖÓû°Ñ´ËµçÁ÷±í¸Ä×°³ÉÁ¿³ÌΪ3VµÄµçѹ±í´®ÁªÒ»¸ö 80¦¸µÄµç×è | |
| D£® | ÏÖÓû°Ñ´ËµçÁ÷±í¸Ä×°³ÉÁ¿³ÌΪ12VµÄµçѹ±íÓ¦²¢ÁªÒ»¸ö220¦¸µÄµç×è |
| A£® | 200eV | B£® | 150eV | C£® | 100eV | D£® | 50eV |
| A£® | t=2sʱÈ˶ԵذåµÄѹÁ¦×î´ó | B£® | t=5sʱÈ˶ԵذåµÄѹÁ¦Îª0 | ||
| C£® | t=8.5sʱÈ˶ԵذåµÄѹÁ¦×î´ó | D£® | t=8.5sʱÈ˶ԵذåµÄѹÁ¦×îС |
| A£® | СÎï¿éµ½Cµãºó½«ÑØÐ±ÃæÏ»¬ | |
| B£® | СÎï¿é¼ÓËÙʱµÄ¼ÓËÙ¶ÈÊǼõËÙʱ¼ÓËٶȵÄ$\frac{1}{3}$ | |
| C£® | СÎï¿éÓëÐ±Ãæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ$\frac{\sqrt{3}}{3}$ | |
| D£® | ÍÆÁ¦FµÄ´óСΪ4N |