题目内容
11.| A. | $\sqrt{3}$:1 | B. | 2:$\sqrt{3}$ | C. | 2:1 | D. | 1:2 |
分析 将两球和弹簧B看成一个整体,分析受力情况,根据平衡条件求出弹簧A、C拉力之比,即可由胡克定律得到伸长量之比.
解答 解:将两球和弹簧B看成一个整体,整体受到总重力G、弹簧A和C的拉力,如图,设弹簧A、C的拉力分别为F1和F2.由平衡条件得知,
F2和G的合力与F1大小相等、方向相反,则得:
F2=F1sin30°=0.5F1.
根据胡克定律得:F=kx,k相同,则 弹簧A、C的伸长量之比等于两弹簧拉力之比,即有:
xA:xC=F1:F2=2:1
故选:C.
点评 本题首先要选择好研究对象,其次正确分析受力情况,作出力图,再由平衡条件并结合正交分解法列式求解,基础题目.
练习册系列答案
相关题目
1.
如图所示,质量为M、中空部分为半球形的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m的小铁球.现用一个水平向右的推力F推动凹槽,当小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成α角,重力加速度为g.下列说法正确的是( )
| A. | 小铁球受到的合外力方向水平向左 | B. | 凹槽对小铁球的支持力为$\frac{mg}{sinα}$ | ||
| C. | 系统的加速度为gtan α | D. | 推力F=(m+M)gtan α |
2.
如图所示,A为某电源的路端电压与电流的关系图线;B为一电阻R的两端电压与电流的关系图线.下列说法正确的是( )
| A. | 电源的电动势为1.5V;内阻为2.5Ω | |
| B. | 电阻R的阻值为1.5Ω | |
| C. | 将电阻R接在电源的两端,电源的输出功率为0.24W | |
| D. | 电源的最大输出功率为0.9W |
19.真空中有两个静止的点电荷,它们之间静电力的大小为F.如果保持这两个点电荷之间的距离不变,而将它们的电荷量都变为原来的3倍,那么它们之间静电力的大小变为( )
| A. | $\frac{F}{81}$ | B. | $\frac{F}{9}$ | C. | 9F | D. | 81F |
6.质量m的汽车在平直柏油路上行驶时所受阻力恒定,汽车在柏油路上从静止开始以加速度a匀加速直线运动,经时间t1达到最大输出功率,汽车继续加速运动到最大速度v,匀速运动一段距离后,保持最大输出功率驶入沙石路,汽车在沙石路所受阻力为柏油路上的2倍,则( )
| A. | 汽车在柏油路面加速阶段的平均速度等于0.5v | |
| B. | 汽车最大输出功率为$\frac{m{a}^{2}v{t}_{1}}{v-a{t}_{1}}$ | |
| C. | 汽车驶入沙石路后先做加速度减小的减速运动,最后做匀速直线运动 | |
| D. | 汽车在沙石路面匀速运动的速度为2v |
16.
如图所示,AC、BD为圆的两条互相垂直的直径,圆心为O,半径为R.电荷量均为Q的正、负点电荷放在圆周上,它们的位置关于AC对称,+Q与O点的连线和OC间夹角为30°.下列说法正确的是( )
| A. | O点的场强大小为$\frac{kQ}{R^2}$ | |
| B. | B、D两点的场强相同 | |
| C. | B、D两点的电势关系是ϕB=ϕD | |
| D. | 电荷量为q的正电荷在A点的电势能小于在C点的电势能 |
3.
氢原子的能级如图所示,已知可见光的光子能量范围约为1.62~3.11eV.下列说法正确的是( )
| A. | 一个处于n=2 能级的氢原子,可以吸收一个能量为4eV 的光子 | |
| B. | 大量氢原子从高能级向n=3 能级跃迁时,发出的光是不可见光 | |
| C. | 大量处于n=4 能级的氢原子,跃迁到基态的过程中可以释放出6种频率的光子 | |
| D. | 氢原子从高能级向低能级跃迁的过程中释放的光子的能量可能大于13.6eV | |
| E. | 用能量为10eV 和3.6eV 的两种光子同时照射大量处于基态的氢原子,有可能使个别氢原子电离 |
20.
假设月球是半径为R、质量分布均匀的球体,距离月球中心为r处的重力加速度g与r的关系如图所示.已知引力常量为G,月球表面的重力加速度大小为g0,由上述信息可知( )
| A. | 距离球心$\frac{R}{2}$处的重力加速度为$\frac{{g}_{0}}{2}$ | B. | 月球的质量为$\frac{{g}_{0}R}{G}$ | ||
| C. | 月球的平均密度为$\frac{3{g}_{0}}{4πG}$ | D. | 月球表面的第一宇宙速度为$\sqrt{{g}_{0}R}$ |
1.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了人类文明的进步,下列表述正确的是( )
| A. | 伽利略通过理想实验,说明物体的运动不需要力来维持 | |
| B. | 奥斯特发现了电磁感应定律 | |
| C. | 法拉第首先发现了电流的周围存在磁场 | |
| D. | 卡文迪许发现了万有引力定律 |