题目内容

18.如图所示,质量M=2kg的木块套在水平杆上,并用轻绳与质量m=kg的小球相连.今用跟水平方向成α=30°角的力F=10N拉着球带动木块一起向右匀速运动,运动中M、m的相对位置保持不变,g=10m/s2,求:
(1)轻绳对小球的拉力FT和轻绳与水平方向的夹角θ
(2)木块M与水平杆间的动摩擦因数.

分析 (1)以小球为研究对象,分析受力,作出力图,根据平衡条件求解轻绳与水平方向夹角θ;
(2)以木块和小球组成的整体为研究对象,分析受力情况,由平衡条件和摩擦力公式求解木块与水平杆间的动摩擦因数μ.

解答 解:(1)设细绳对B的拉力为T.以小球为研究对象,分析受力,作出力图如图1,由平衡条件可得:
Fcos30°=FTcosθ…①
Fsin30+FTsinθ=mg…②
代入解得:FT=10N,tanθ=$\frac{\sqrt{3}}{3}$,
即:θ=30°
(2)以木块和小球组成的整体为研究对象,分析受力情况,如图2.再平衡条件得:
Fcos30°=f         
N+Fsin30°=(M+m)g        
又f=μN
得到:μ=$\frac{Fcos30°}{(M+m)g-Fsin30°}$=$\frac{\sqrt{3}}{5}$
答:(1)运动过程中轻绳对小球的拉力为10N,而轻绳与水平方向夹角θ为30°;
(2)木块与水平杆间的动摩擦因数μ为$\frac{\sqrt{3}}{5}$.

点评 本题涉及两个物体的平衡问题,研究对象的选择要灵活,此题采用隔离法与整体相结合的方法,也可以就采用隔离法研究.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网