ÌâÄ¿ÄÚÈÝ
1£®£¨1£©Ïß¿ò²úÉúµÄ¸ÐÓ¦µç¶¯ÊƵĴóС£®
£¨2£©ÑØxÖáÕý·½ÏòµÄˮƽÍâÁ¦µÄ´óС£®
·ÖÎö £¨1£©Ïß¿ò×öÔȼÓËÙÔ˶¯£¬ÓÉÔ˶¯Ñ§¹«Ê½Çó³öt0ʱ¼äÄÚµÄÎ»ÒÆ£¬ÔÙÓÉ·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÇó¸ÐÓ¦µç¶¯ÊÆ£®
£¨2£©Óɱպϵç·ŷķ¶¨ÂÉÇó³ö¸ÐÓ¦µçÁ÷£¬ÓÉF=BILÇó³öÏß¿òËùÊܵݲÅàÁ¦£¬×îºóÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóˮƽÍâÁ¦µÄ´óС£®
½â´ð ½â£º£¨1£©Ïß¿ò×öÔȼÓËÙÔ˶¯£¬t0ʱ¼äÄÚµÄÎ»ÒÆÎª£ºx=$\frac{1}{2}a{t}_{0}^{2}$
t0ʱ¿ÌÏß¿òµÄËÙ¶ÈΪ£ºv=at0
cd±ß²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ´óСΪ£ºE1=£¨B0+kx£©Lv
fe±ß²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ´óСΪ£ºE2=[B0+k£¨x+L£©]Lv
»ØÂ·×ܵĸÐÓ¦µç¶¯ÊÆÎª£ºE=E2-E1=kL2vx=$\frac{1}{2}k{L}^{2}va{t}_{0}^{2}$
£¨2£©Ïß¿òÖиÐÓ¦µçÁ÷Ϊ£ºI=$\frac{E}{R}$
cd±ßËùÊܵݲÅàÁ¦´óСΪ£ºF1=£¨B0+kx£©IL£¬·½ÏòÏòÓÒ
fe±ßËùÊܵݲÅàÁ¦´óСΪ£ºF2=[B0+k£¨x+L£©]IL£¬·½ÏòÏò×ó
ËùÒÔÏß¿òËùÊܵݲÅàÁ¦ÎªFA=F2-F1=kIL2£¬·½ÏòÏò×ó
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵãºF-FA=ma
ÁªÁ¢½âµÃˮƽÍâÁ¦Îª£ºF=ma+$\frac{{k}^{2}{L}^{4}va{t}_{0}^{2}}{2R}$
´ð£º£¨1£©Ïß¿ò²úÉúµÄ¸ÐÓ¦µç¶¯ÊƵĴóСÊÇ$\frac{1}{2}k{L}^{2}va{t}_{0}^{2}$£®
£¨2£©ÑØxÖáÕý·½ÏòµÄˮƽÍâÁ¦µÄ´óСÊÇma+$\frac{{k}^{2}{L}^{4}va{t}_{0}^{2}}{2R}$£®
µãÆÀ ±¾ÌâÒªÕÆÎÕ·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢±ÕºÏµç·ŷķ¶¨ÂɺͰ²ÅàÁ¦µÄ¹«Ê½£¬¹Ø¼üҪעÒâcd±ßºÍfe±ß¶¼Òª²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬´æÔÚ·´µç¶¯ÊÆ£®Á½±ß¶¼ÒªÊܵ½°²ÅàÁ¦£¬°²ÅàÁ¦·½ÏòÏà·´£®ÖªµÀ¼ÓËÙ¶ÈÓëÏß¿òËùÊܵĺÏÁ¦³ÉÕý±È£®
| A£® | µçÁ÷ͨ¹ýµ¼ÌåµÄÈȹ¦ÂÊÓëµçÁ÷´óС³ÉÕý±È | |
| B£® | Á¦¶ÔÎïÌåËù×öµÄ¹¦ÓëÁ¦µÄ×÷ÓÃʱ¼ä³ÉÕý±È | |
| C£® | µ¯ÐÔÏÞ¶ÈÄÚ£¬µ¯»ÉµÄ¾¢¶ÈϵÊýÓ뵯»ÉÉ쳤Á¿³ÉÕý±È | |
| D£® | µçÈÝÆ÷Ëù´øµçºÉÁ¿ÓëÁ½¼«°å¼äµÄµçÊÆ²î³ÉÕý±È |