ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ÔÚ¼ÓËÙÏ»¬¹ý³ÌÖУ¬µ±ab¸ËµÄËÙ¶È´óСΪvʱ£¬ab¸ËÖеĵçÁ÷¼°Æä¼ÓËٶȵĴóС£»
£¨2£©ÇóÔÚÏ»¬¹ý³ÌÖÐab¸Ë¿É´ïµ½µÄ×î´óËÙ¶È£®
£¨3£©´Ó¿ªÊ¼Ï»¬µ½´ïµ½×î´óËٶȵĹý³ÌÖУ¬°ôÑØµ¼¹ìÏ»¬ÁË
¾àÀës£¬ÇóÕû¸ö×°ÖÃÉúÈȶàÉÙ£®
·ÖÎö £¨1£©ÓÉE=BLvÇó³ö¸ÐÓ¦µç¶¯ÊÆ£¬ÓÉÅ·Ä·¶¨ÂÉÇó³öµçÁ÷£»Óɰ²ÅàÁ¦¹«Ê½Çó³ö°²ÅàÁ¦£¬È»ºóÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔÇó³ö¼ÓËÙ¶È£®
£¨2£©µ±½ðÊô¸ËÔÈËÙÏ»¬Ê±ËÙ¶È´ïµ½×î´ó£¬Ó¦ÓÃÆ½ºâÌõ¼þ¿ÉÒÔÇó³ö×î´óËÙ¶È£®
£¨3£©½ðÊô¸ËÏ»¬¹ý³ÌÆäÖØÁ¦ÊÆÄÜת»¯Îª¶¯ÄÜÓëϵͳµÄ½¹¶úÈÈ£¬Ó¦ÓÃÄÜÁ¿Êغ㶨ÂÉ¿ÉÒÔÇó³ö×°ÖòúÉúµÄÈÈÁ¿£®
½â´ð ½â£º£¨1£©½ðÊô¸ËËÙ¶ÈΪvʱ£¬¸ÐÓ¦µç¶¯ÊÆ£ºE=BLv£¬
¸ÐÓ¦µçÁ÷£ºI=$\frac{E}{R}$=$\frac{BLv}{R}$£¬
½ðÊô¸ËÊܵ½µÄ°²ÅàÁ¦£ºF=BIL=$\frac{{B}^{2}{L}^{2}v}{R}$£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºmgsin¦È-$\frac{{B}^{2}{L}^{2}v}{R}$=ma£¬
½âµÃ£ºa=gsin¦È-$\frac{{B}^{2}{L}^{2}v}{mR}$£»
£¨2£©½ðÊô¸ËÔÈËÙÏ»¬Ê±ËÙ¶È´ïµ½×î´ó£¬
ÓÉÆ½ºâÌõ¼þµÃ£ºmgsin¦È=$\frac{{B}^{2}{L}^{2}{v}_{m}}{R}$£¬
½âµÃ£¬×î´óËÙ¶È£ºvm=$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$£»
£¨3£©ÓÉÄÜÁ¿Êغ㶨Âɵãºmgssin¦È=$\frac{1}{2}$mvm2+Q£¬
½âµÃ£ºQ=mgssin¦È-$\frac{{m}^{3}{g}^{2}{R}^{2}si{n}^{2}¦È}{2{B}^{4}{L}^{4}}$£»
´ð£º£¨1£©µ±ab¸ËµÄËÙ¶È´óСΪvʱ£¬ab¸ËÖеĵçÁ÷Ϊ$\frac{BLv}{R}$£¬¼ÓËٶȵĴóСΪgsin¦È-$\frac{{B}^{2}{L}^{2}v}{mR}$£»
£¨2£©ÔÚÏ»¬¹ý³ÌÖÐab¸Ë¿É´ïµ½µÄ×î´óËÙ¶ÈΪ$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$£®
£¨3£©Õû¸ö×°ÖÃÉúÈÈÊÇmgssin¦È-$\frac{{m}^{3}{g}^{2}{R}^{2}si{n}^{2}¦È}{2{B}^{4}{L}^{4}}$£®
µãÆÀ µ±¸ËÔÈËÙÔ˶¯Ê±¸ËµÄËÙ¶È×î´ó£¬·ÖÎöÇå³þ¸ËµÄÔ˶¯¹ý³ÌÊǽâÌâµÄǰÌ᣻·ÖÎöÇå³þ¸ËµÄÔ˶¯¹ý³Ìºó£¬Ó¦ÓÃE=BLv¡¢Å·Ä·¶¨ÂÉ¡¢°²ÅàÁ¦¹«Ê½¡¢Å£¶ÙµÚ¶þ¶¨ÂÉ¡¢Æ½ºâÌõ¼þÓëÄÜÁ¿Êغ㶨Âɼ´¿É½âÌ⣻Çó½âÈÈÁ¿Ê±´ÓÄÜÁ¿½Ç¶È·ÖÎö¿ÉÒÔ¼ò»¯½âÌâ¹ý³Ì£®
| A£® | 0.5R | B£® | 3R | C£® | 1.5R | D£® | $\frac{2}{3}$R |
| A£® | ½ðÊôϸ¸Ë¿ªÊ¼Ô˶¯Ê±µÄ¼ÓËÙ¶È´óСΪ4m/s2 | |
| B£® | ½ðÊôϸ¸ËÔ˶¯µ½PµãʱµÄËÙ¶È´óСΪ$\sqrt{2}$m/s | |
| C£® | ½ðÊôϸ¸ËÔ˶¯µ½PµãʱµÄÏòÐļÓËÙ¶È´óСΪ8m/s2 | |
| D£® | ½ðÊôϸ¸ËÔ˶¯µ½Pµãʱ¶ÔÿһÌõ¹ìµÀµÄ×÷ÓÃÁ¦´óСΪ0.9N |
| A£® | µç×èR1ÏûºÄµÄÈȹ¦ÂÊΪ$\frac{Fv}{3}$ | |
| B£® | µç×èR2ÏûºÄµÄÈȹ¦ÂÊΪ$\frac{Fv}{6}$ | |
| C£® | Õû¸ö×°ÖÃÒòĦ²Á¶øÏûºÄµÄÈȹ¦ÂÊΪ¦Ìmgvcos ¦È | |
| D£® | Õû¸ö×°ÖÃÏûºÄµÄ»úе¹¦ÂÊΪ¦Ìmgvcos ¦È |