ÌâÄ¿ÄÚÈÝ
10£®Ä³Í¬Ñ§Éè¼ÆÁËÈçͼ¼×ËùʾµÄ×°ÖÃÀ´Ì½¾¿Ð¡³µµÄ¼ÓËÙ¶ÈÓëËùÊܺÏÁ¦µÄ¹ØÏµ£®½«×°ÓÐÁ¦´«¸ÐÆ÷µÄС³µ·ÅÖÃÓÚˮƽ³¤Ä¾°åÉÏ£¬»ºÂýÏòСͰÖмÓÈëϸɰ£¬Ö±µ½Ð¡³µ¸Õ¿ªÊ¼Ô˶¯ÎªÖ¹£¬¼ÇÏ´«¸ÐÆ÷µÄ×î´óʾÊýF0£¬ÒԴ˱íʾС³µËùÊÜĦ²ÁÁ¦µÄ´óС£®ÔÙ½«Ð¡³µ·Å»ØÔ´¦²¢°´×¡£¬¼ÌÐøÏòСͰÖмÓÈëϸɰ£¬¼ÇÏ´«¸ÐÆ÷µÄʾÊýF1£®£¨1£©½ÓͨƵÂÊΪ50HzµÄ½»Á÷µçÔ´£¬ÊÍ·ÅС³µ£¬´ò³öÈçͼÒÒËùʾµÄÖ½´ø£®´Ó±È½ÏÇåÎúµÄµãÆð£¬Ã¿5¸öµãȡһ¸ö¼ÆÊýµã£¬Á¿³öÏàÁÚ¼ÆÊýµãÖ®¼äµÄ¾àÀ룬ÔòС³µµÄ¼ÓËÙ¶Èa=0.16m/s2£®
£¨2£©¸Ä±äСͰÖÐɰµÄÖØÁ¦£¬¶à´ÎÖØ¸´ÊµÑ飬»ñµÃ¶à×éÊý¾Ý£¬Ãè»æÐ¡³µ¼ÓËÙ¶ÈaÓëºÏÁ¦F
£¨F=F1-F0£©µÄ¹ØÏµÍ¼Ïó£®²»¼ÆÖ½´øÓë¼ÆÊ±Æ÷¼äµÄĦ²Á£®Èçͼ±ûµÄͼÏóÖпÉÄÜÕýÈ·µÄÊÇB£®
£¨3£©Í¬Ò»´ÎʵÑéÖУ¬Ð¡³µÊÍ·Åǰ´«¸ÐÆ÷ʾÊýF1ÓëС³µ¼ÓËÙÔ˶¯Ê±´«¸ÐÆ÷ʾÊýF2µÄ¹ØÏµÊÇF1£¾F2£¨Ñ¡Ìî¡°£¼¡±¡¢¡°=¡±»ò¡°£¾¡±£©£®
£¨4£©¹ØÓÚ¸ÃʵÑ飬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇD£®
A£®Ð¡³µºÍ´«¸ÐÆ÷µÄ×ÜÖÊÁ¿Ó¦Ô¶´óÓÚСͰºÍɰµÄ×ÜÖÊÁ¿
B£®ÊµÑéÖÐÐèÒª½«³¤Ä¾°åÓҶ˵æ¸ß
C£®ÊµÑéÖÐÐèÒª²â³öС³µºÍ´«¸ÐÆ÷µÄ×ÜÖÊÁ¿
D£®ÓüÓɰµÄ·½·¨¸Ä±äÀÁ¦µÄ´óСÓë¹Ò¹³ÂëµÄ·½·¨Ïà±È£¬¿É¸ü·½±ãµØ»ñÈ¡¶à×éʵÑéÊý¾Ý£®
·ÖÎö £¨1£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¹«Ê½¡÷x=aT2¿ÉÒÔÇó³ö¼ÓËٶȵĴóС£»
£¨2£©¸Ä±äСͰÖÐɰµÄÖØÁ¦£¬¶à´ÎÖØ¸´ÊµÑ飬»ñµÃ¶à×éÊý¾Ý£¬Ãè»æÐ¡³µ¼ÓËÙ¶ÈaÓëºÏÁ¦F£¨F=F1-F0£©µÄ¹ØÏµÍ¼Ïó£¬ÓÉÓÚÒѾƽºâĦ²ÁÁ¦£¬ËùÒÔͼÏóÓ¦¸Ã¹ýԵ㣻
£¨3£©¶ÔСͰÊÜÁ¦·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â£»
£¨4£©ÔÚ¸ÃʵÑéÖÐÁ¦´«¸ÐÆ÷¿ÉÒÔÖ±½ÓµÃ³öÁ¦µÄ´óС£¬ÊµÑéÖв»ÐèÒª½«³¤Ä¾°åÓҶ˵æ¸ß£¬ÒòΪÒѾ²âÁ¿ÁËС³µËùÊÜĦ²ÁÁ¦µÄ´óС£¬ÓüÓɰµÄ·½·¨¸Ä±äÀÁ¦µÄ´óСÓë¹Ò¹³ÂëµÄ·½·¨Ïà±È£¬¿É¸ü·½±ãµØ»ñÈ¡¶à×éʵÑéÊý¾Ý£®
½â´ð ½â£º£¨1£©ÓÉÓÚÿÏàÁÚÁ½¸ö¼ÆÊýµã¼ä»¹ÓÐ4¸öµã£¬ËùÒÔÏàÁڵļÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪ£ºt=0.02¡Á5=0.1s£¬
¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¹«Ê½¡÷x=at2¿ÉµÃ¼ÓËÙ¶ÈΪ£ºa=$\frac{{x}_{4}-{x}_{1}}{3{t}^{2}}$=$\frac{£¨4.00-3.52£©¡Á1{0}^{-2}m}{3¡Á£¨0.1s£©^{2}}$=0.16 m/s2£»
£¨2£©¸Ä±äСͰÖÐɰµÄÖØÁ¦£¬¶à´ÎÖØ¸´ÊµÑ飬»ñµÃ¶à×éÊý¾Ý£¬Ãè»æÐ¡³µ¼ÓËÙ¶ÈaÓëºÏÁ¦F£¨F=F1-F0£©µÄ¹ØÏµÍ¼Ïó£®
ÓÉÓÚÒѾƽºâĦ²ÁÁ¦£¬ËùÒÔͼÏóÓ¦¸Ã¹ýԵ㣬һÌõÇãбµÄÖ±Ïߣ®¹ÊBÕýÈ·£¬ACD´íÎó£»
¹ÊÑ¡£ºB£®
£¨3£©¶ÔСͰÊÜÁ¦·ÖÎö£¬ÉèÐ¡Í°ÖØÁ¦Îªmg£¬
ľ°åÊÍ·Åǰµ¯»É³ÓµÄʾÊýF1£¬ËùÒÔF1=mg£¬
ÉèС³µµÄÖØÁ¦ÎªMg£¬Ð¡³µÔÚ¼ÓËÙÔ˶¯Ê±µ¯»É³ÓµÄʾÊýF2£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãºmg-F2=ma£¬ËùÒÔF1£¾F2£»
£¨4£©A¡¢ÔÚ¸ÃʵÑéÖÐÁ¦´«¸ÐÆ÷¿ÉÒÔÖ±½ÓµÃ³öÁ¦µÄ´óС£¬²»ÐèҪʹС³µºÍ´«¸ÐÆ÷µÄ×ÜÖÊÁ¿Ó¦Ô¶´óÓÚСͰºÍɰµÄ×ÜÖÊÁ¿£¬¹ÊA´íÎó£»
B¡¢ÊµÑéÖв»ÐèÒª½«³¤Ä¾°åÓҶ˵æ¸ß£¬ÒòΪÒѾ²âÁ¿ÁËС³µËùÊÜĦ²ÁÁ¦µÄ´óС£¬¹ÊB´íÎó£»
C¡¢ÊµÑéÖв»ÐèÒª²â³öС³µºÍ´«¸ÐÆ÷µÄ×ÜÖÊÁ¿£¬Ö»ÐèÒª±£Ö¤Ð¡³µºÍ´«¸ÐÆ÷µÄ×ÜÖÊÁ¿²»±ä£¬¹ÊC´íÎó£»
D¡¢ÓüÓɰµÄ·½·¨¸Ä±äÀÁ¦µÄ´óСÓë¹Ò¹³ÂëµÄ·½·¨Ïà±È£¬¿É¸ü·½±ãµØ»ñÈ¡¶à×éʵÑéÊý¾Ý£¬¹ÊDÕýÈ·£»
¹ÊÑ¡£ºD£®
¹Ê´ð°¸Îª£º£¨1£©0.16£»£¨2£©B£»£¨3£©£¾£»£¨4£©D£®
µãÆÀ ±¾Ìâ½èÖúʵÑ鿼²éÁËÔȱäËÙÖ±ÏߵĹæÂÉÒÔ¼°ÍÆÂÛµÄÓ¦Óã¬ÔÚÆ½Ê±Á·Ï°ÖÐÒª¼ÓÇ¿»ù´¡ÖªÊ¶µÄÀí½âÓëÓ¦Óã¬Ìá¸ß½â¾öÎÊÌâÄÜÁ¦£®½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄ²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏÆäÖÐÆ½ºâĦ²ÁÁ¦µÄÔÒòÒÔ¼°×ö·¨ÔÚʵÑéÖÐÓ¦µ±Çå³þ£®
| A£® | ·½ÏòÑØPµãºÍµãµçºÉµÄÁ¬ÏßÏò×󣬴óСΪ $\frac{2kqd}{{r}^{3}}$ | |
| B£® | ·½ÏòÑØPµãºÍµãµçºÉµÄÁ¬ÏßÏò×󣬴óСΪ $\frac{2kq\sqrt{{r}^{2}-{d}^{2}}}{{r}^{3}}$ | |
| C£® | ·½Ïò´¹Ö±ÓÚ½ðÊô°åÏò×󣬴óСΪ $\frac{2kqd}{{r}^{3}}$ | |
| D£® | ·½Ïò´¹Ö±ÓÚ½ðÊô°åÏò×󣬴óСΪ $\frac{2kq\sqrt{{r}^{2}-{d}^{2}}}{{r}^{3}}$ |
| A£® | 2BkL | B£® | $\frac{BkL}{2}$ | C£® | $\frac{3BkL}{2}$ | D£® | $\frac{BkL}{8}$ |
| A£® | a¡¢bÁ½µãµ½µãµçºÉQµÄ¾àÀëÖ®±Èra£ºrb=3£º1 | |
| B£® | a¡¢bÁ½µãµ½µãµçºÉQµÄ¾àÀëÖ®±Èra£ºrb=$\sqrt{3}$£º1 | |
| C£® | a¡¢bÁ½µã´¦µÄµçÊÆµÄ´óС¹ØÏµÎª¦Õa£¾¦Õb | |
| D£® | ÔڰѼìÑéµçºÉqÑØÖ±Ïß´ÓaÒÆµ½bµÄ¹ý³ÌÖУ¬µç³¡Á¦ÏÈ×ö¸º¹¦ºó×öÕý¹¦ |