ÌâÄ¿ÄÚÈÝ
8£®£¨1£©Á£×ÓÔڴų¡ÖеÄÔ˶¯°ë¾¶£»
£¨2£©Á£×Ó´ÓOµã½øÈë´Å³¡µ½µÚ¶þ´Î¾¹ý´Å³¡±ß½çOMµÄʱ¼ä£»
£¨3£©Í¨¹ý¼ÆËã˵Ã÷Á£×ÓÊÇ·ñÄÜÀ뿪µç´Å³¡ÇøÓò£®
·ÖÎö £¨1£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³öÁ£×ÓÔڴų¡ÖÐÔ˶¯°ë¾¶£®
£¨2£©¸ù¾ÝÁ£×ÓµÚÒ»´ÎÔڴų¡ÖеÄÔ²ÐĽÇÇó³öÁ£×ÓµÚÒ»´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄʱ¼ä£¬³ö´Å³¡ºó£¬Ôڵ糡ÖÐÏÈÔȼõËÙÈ»ºóÔȼÓËÙ³öµç³¡£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öÔڵ糡ÖеÄʱ¼ä£¬´Ó¶øµÃ³öÁ£×Ó´ÓOµã½øÈë´Å³¡µ½µÚ¶þ´Î¾¹ý´Å³¡±ß½çOMµÄʱ¼ä£®
£¨3£©Î¢Á£´ÓCµãÑØyÖáÕý·½Ïò½øÈëµç³¡£¬×öÀàÆ½Å×Ô˶¯£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³ö´¹Ö±µç³¡·½ÏòÉϵÄÎ»ÒÆ£¬ÅжÏÁ£×ÓÄÜ·ñÀ뿪µç´Å³¡ÇøÓò£®
½â´ð ½â£º£¨1£©´øµç΢Á£´ÓOµãÉäÈë´Å³¡£¬Ô˶¯¹ì¼£Èçͼ£®µÚÒ»´Î¾¹ý´Å³¡±ß½çÉϵÄAµã£¬
ÓÉ$q{v}_{0}B=m\frac{{{v}_{0}}^{2}}{r}$µÃ£ºr=$\frac{m{v}_{0}}{qB}=\frac{2¡Á1{0}^{4}}{2¡Á1{0}^{6}¡Á0.1}$m=0.1m£®
£¨2£©Éè´øµçÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT£¬Óɹ켣ͼ¿ÉÖª£¬Á£×ÓµÚÒ»´Î½øÈë´Å³¡±ß½ç£¬½«Ñص糡Ïß½øÈëµç³¡£¬Ôڵ糡ÖÐÏÈÔȼõËÙÔÙÔȼÓËÙ³öµç³¡![]()
¸ù¾Ý¼¸ºÎ¹ØÏµÖª£¬Á£×ÓµÚÒ»´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÔ²ÐĽÇ$¦È=\frac{¦Ð}{4}$£¬
ÓÉ T=$\frac{2¦Ðm}{qB}$µÃ£º${t}_{1}=\frac{¦È}{2¦Ð}T=\frac{T}{8}$£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
Eq=ma
${t}_{2}=\frac{{v}_{0}}{a}$£¬
t=t1+2t2£¬
´úÈëÊý¾Ý½âµÃt=2.785¡Á10-5s£®
£¨3£©Î¢Á£´ÓCµãÑØyÖáÕý·½Ïò½øÈëµç³¡£¬×öÀàÆ½Å×Ô˶¯
$¡÷x=\frac{1}{2}a{{t}_{1}}^{2}=2r$£¬¡÷y=v0t£¬
´úÈëÊý¾Ý½âµÃ$¡÷y=0.2\sqrt{2}m$£¬¡÷y£¾0.2m£®
Á£×Ó½«µ½´ïµÚ¶þÏóÏÞ²¢Éä³ö´Å³¡£¬½øÈëµÚÒ»ÏóÏÞ£¬ËµÃ÷Á£×ÓÀ뿪µç´Å³¡ÇøÓò£®
´ð£º£¨1£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ°ë¾¶Îª0.1m£®
£¨2£©Á£×Ó´ÓOµã½øÈë´Å³¡µ½µÚ¶þ´Î¾¹ý´Å³¡±ß½çOMµÄʱ¼äΪ2.785¡Á10-5s£®
£¨3£©Á£×Ó½«µ½´ïµÚ¶þÏóÏÞ²¢Éä³ö´Å³¡£¬½øÈëµÚÒ»ÏóÏÞ£¬ËµÃ÷Á£×ÓÀ뿪µç´Å³¡ÇøÓò£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË´øµçÁ£×ÓÔÚ»ìºÏ³¡ÖÐÔ˶¯µÄÎÊÌ⣬ҪÇóͬѧÃÇÄÜÕýÈ··ÖÎöÁ£×ÓµÄÊÜÁ¦Çé¿ö£¬ÔÙͨ¹ýÊÜÁ¦Çé¿ö·ÖÎöÁ£×ÓµÄÔ˶¯Çé¿ö£¬ÊìÁ·ÕÆÎÕÔ²ÖÜÔ˶¯¼°Æ½Å×Ô˶¯µÄ»ù±¾¹«Ê½£¬ÄѶÈÊÊÖУ®
| A£® | m1=m2+m3 | B£® | m1£¾m2+m3 | ||
| C£® | m1£¼m2+m3 | D£® | ²»ÄÜÈ·¶¨m1¡¢m2ºÍm3Ö®¼äµÄ¹ØÏµ |
| A£® | Ô¼µÈÓÚ807¦¸ | B£® | Ã÷ÏÔСÓÚ807¦¸ | C£® | Ã÷ÏÔ´óÓÚ807¦¸ | D£® | ½Ó½ü1000¦¸ |
| A£® | HÔ½¸ß£¬Ð¡Çò×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦Ô½´ó | |
| B£® | HÔ½¸ß£¬Ð¡Çò×öÔ²ÖÜÔ˶¯µÄÏßËÙ¶ÈԽС | |
| C£® | HÔ½¸ß£¬Ð¡Çò×öÔ²ÖÜÔ˶¯µÄÖÜÆÚÔ½´ó | |
| D£® | HÔ½¸ß£¬Ð¡Çò¶Ô²à±ÚµÄѹÁ¦Ô½Ð¡ |