ÌâÄ¿ÄÚÈÝ
3£®Ð¡Ã÷ͬѧÉè¼ÆÁËÈçͼ¼×ËùʾµÄµç·²âµçÔ´µç¶¯ÊÆE¼°µç×èR1ºÍR2µÄ×èÖµ£®ÊµÑéÆ÷²ÄÓУº´ý²âµçÔ´E£¨²»¼ÆÄÚ×裩£¬´ý²âµç×èR1£¬´ý²âµç×èR2£¬µçÁ÷±íA£¨Á¿³ÌΪ0.6A£¬ÄÚ×è½ÏС£©£¬µç×èÏäR£¨0-99.99¦¸£©£¬µ¥µ¶µ¥ÖÀ¿ª¹ØS1£¬µ¥µ¶Ë«ÖÀ¿ª¹ØS2£¬µ¼ÏßÈô¸É£®£¨1£©ÏȲâµç×èR1µÄ×èÖµ£®±ÕºÏS1£¬½«S2Çл»µ½a£¬µ÷½Úµç×èÏäR£¬¶Á³öÆäʾÊýr1ºÍ¶ÔÓ¦µÄµçÁ÷±íʾÊýI£¬½«S2Çл»µ½b£¬µ÷½Úµç×èÏäR£¬Ê¹µçÁ÷±íʾÊýÈÔΪI£¬¶Á³ö´Ëʱµç×èÏäµÄʾÊýr2£®Ôòµç×èR1µÄ±í´ïʽΪR1=r1-r2£®
£¨2£©Ð¡Ã÷ͬѧÒѾ²âµÃµç×èR1=2.0¦¸£¬¼ÌÐø²âµçÔ´µç¶¯ÊÆEºÍµç×èR2µÄ×èÖµ£®ËûµÄ×ö·¨ÊÇ£º±ÕºÏS1£¬½«S2Çл»µ½b£¬¶à´Îµ÷½Úµç×èÏ䣬¶Á³ö¶à×éµç×èÏäʾÊýRºÍ¶ÔÓ¦µÄµçÁ÷±íʾÊýI£¬ÓɲâµÃµÄÊý¾Ý£¬»æ³öÁËÈçͼÒÒËùʾµÄ$\frac{1}{I}$-RͼÏߣ¬ÔòµçÔ´µç¶¯ÊÆE=1.5V£¬µç×èR2=1.0¦¸£®£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
£¨3£©Óô˷½·¨²âµÃµÄµç¶¯ÊƵIJâÁ¿ÖµµÈ ÓÚÕæÊµÖµ£»R2µÄ²âÁ¿Öµ´óÓÚÕæÊµÖµ£¨Ìî¡°´óÓÚ¡±¡¢¡°Ð¡ÓÚ¡±»ò¡°µÈÓÚ¡±£©
·ÖÎö £¨1£©¹Ø¼üÊǸù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÁгö±í´ïʽ£¬È»ºóÇó½â¼´¿É£»
£¨2£©¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÁгö±í´ïʽ£¬È»ºóÕûÀí³ö¹ØÓÚ$\frac{1}{I}$ÓëRµÄº¯Êý±í´ïʽ£¬ÔÙ¸ù¾ÝбÂʺͽؾàµÄ¸ÅÄî¼´¿ÉÇó½â£»
£¨3£©±¾ÊµÑéÖеçÔ´ÄÚ×迼ÂÇÔÚÄÚ£¬Ó¦¿¼ÂÇÄÚ×èµÄ×÷Ó㬴Ӷø·ÖÎöÎó²îÇé¿ö£®
½â´ð ½â£º£¨1£©µ±R2½ÓaʱӦÓУºE=I£¨R2+r1£©£»
µ±S2½ÓbʱӦÓУºE=I£¨R2+R1+r£©£»
ÁªÁ¢ÒÔÉÏÁ½Ê½½âµÃ£ºR1=r1-r2£»
£¨2£©¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÓ¦ÓУºE=I£¨R2+R+R1£©£¬
±äÐÎΪ£º$\frac{1}{I}$=$\frac{1}{E}$R+$\frac{{R}_{1}+{R}_{2}}{E}$£¬
¸ù¾Ýº¯ÊýбÂʺͽؾàµÄ¸ÅÄîÓ¦ÓУº$\frac{1}{E}$=$\frac{4.0-2.0}{3}$=$\frac{2}{3}$£¬
$\frac{{R}_{1}+{R}_{2}}{E}$=2.0
½âµÃ£ºE=1.5V£¬R2=1.0¦¸£»
£¨3£©Èô¿¼ÂǵçÔ´ÄÚ×裬¶Ô£¨1£©£º½ÓaʱӦÓУºE=I£¨R2+r1+r£©£¬½ÓbʱӦÓУºE=I£¨R2+r2+r£©
ÁªÁ¢¿ÉµÃR1=r1-r2£¬¼´²âÁ¿ÖµÓëÕæÊµÖµÏà±È²»±ä£»
¶Ô£¨2£©Ó¦ÓУºE=I£¨R2+R+R1+r£©£¬±äÐÎΪ$\frac{1}{E}$=$\frac{1}{E}$R+$\frac{{R}_{1}+{R}_{2}+r}{E}$£¬
±È½ÏÁ½´Î±í´ïʽµÄбÂʺͽؾà¿ÉÖª£¬µç¶¯ÊƲ»±ä£¬R1±äС£¬¼´²âÁ¿Öµ±ÈÕæÊµÖµÆ«´ó£®
¹Ê´ð°¸Îª£º£¨1£©r1-r2
£¨2£©1.5£¬1.0
£¨3£©µÈÓÚ£¬´óÓÚ£®
µãÆÀ ±¾Ì⿼²é²âÁ¿µç¶¯ÊƺÍÄÚµç×èµÄʵÑ飬±¾ÊµÑéÓ¦Ã÷È·£ºÓöµ½¸ù¾ÝͼÏóÇó½âµÄÎÊÌ⣬Ê×ÏÈÓ¦¸ù¾ÝÐèÒªµÄÎïÀí¹æÂÉÁгö¹«Ê½£¬È»ºóÕûÀí³ö¹ØÓÚ×ÝÖáÓëºáÖáÎïÀíÁ¿µÄº¯Êý±í´ïʽ£¬ÔÙ¸ù¾ÝбÂʺͽؾàµÄ¸ÅÄîÇó½â¼´¿É£®
| A£® | ËùÊܵÄĦ²ÁÁ¦´óСΪ1 N | B£® | µÚ1 sÄÚÊܵ½µÄÀÁ¦´óСÊÇ2 N | ||
| C£® | ÔÚ4 sÄ©»Øµ½³ö·¢µã | D£® | ÔÚ4 sÄ򵀮½¾ùËÙ¶ÈΪ1.5 m/s |
| A£® | $\frac{F}{3}$ | B£® | F | C£® | $\frac{4F}{3}$ | D£® | 2F |
| A£® | µçÈݱä´ó£¬Á½°å¼äµçѹ²»±ä£¬Á½°å¼ä³¡Ç¿±ä´ó | |
| B£® | µçÈݱäС£¬Á½°å¼äµçѹ±ä´ó£¬Á½°å¼ä³¡Ç¿²»±ä | |
| C£® | Á£×Ó½«´òÔÚϰåÉÏ£¬ÇÒ¡÷E1£¾¡÷E2 | |
| D£® | Á£×ÓÈÔÈ»´ÓϰåÓÒ±ßÔµ·É³öµç³¡£¬ÇÒ¡÷E1=¡÷E2 |
| A£® | $\frac{kv}{{\sqrt{{k^2}-1}}}$ | B£® | $\frac{v}{{\sqrt{1-{k^2}}}}$ | C£® | $\frac{kv}{{\sqrt{1-{k^2}}}}$ | D£® | $\frac{v}{{\sqrt{{k^2}-1}}}$ |