ÌâÄ¿ÄÚÈÝ
6£®·ÖÎö ×ϹâµÄÕÛÉäÂʱȺì¹âµÄ´ó£¬ÏàͬµÄÈëÉä½Ç£¬×ϹâµÄÕÛÉä½ÇС£¬¿É·ÖÎö×Ϲâ³öÉäµãÊÇB£®Óɼ¸ºÎ֪ʶÇó³ö×ϹâÕÛÉä½ÇµÄÕýÏÒ£¬ÔÙÓÉÕÛÉ䶨ÂÉÇó×ϹâµÄÕÛÉäÂÊ£®Í¬ÀíÇó³öºì¹âµÄÕÛÉäÂÊ£¬ÔÙÓɹ«Ê½v=$\frac{c}{n}$ Çóºì¹âÔÚ²£Á§×©Öд«²¥µÄËÙ¶È£¬¼´¿ÉÇóµÃ´«²¥µÄʱ¼ä£®
½â´ð
½â£º×ϹâµÄÕÛÉäÂʱȺì¹âµÄ´ó£¬ÏàͬµÄÈëÉä½Ç£¬×ϹâµÄÕÛÉä½ÇС£¬Òò´ËµÃÖª×Ϲâ³öÉäµãÊÇB£®
Óɼ¸ºÎ֪ʶµÃ£ººì¹âÕÛÉä½ÇµÄÕýÏÒÖµ sinr1=$\frac{{x}_{1}}{R}$
ÓÉÕÛÉ䶨ÂɵÃ
ºì¹âµÄÕÛÉäÂÊ n1=$\frac{sini}{sinr}$=$\frac{sin30¡ã}{\frac{{x}_{1}}{R}}$=$\frac{R}{2{x}_{1}}$
ͬÀí¿ÉµÃ×ϹâµÄÕÛÉäÂÊ n2=$\frac{R}{2{x}_{2}}$
ºì¹âÔÚ²£Á§×©Öд«²¥µÄËÙ¶È v=$\frac{c}{{n}_{1}}$
ºì¹âÔڸò£Á§×©Öд«²¥Ê±¼äΪ t=$\frac{R}{v}$
ÁªÁ¢½âµÃ t=$\frac{{R}^{2}}{2{x}_{1}c}$
¹Ê´ð°¸Îª£º$\frac{R}{2{x}_{2}}$£¬$\frac{{R}^{2}}{2{x}_{1}c}$£®
µãÆÀ »³ö¹â·ͼ£¬Óɼ¸ºÎ֪ʶÇó³öÕÛÉä½ÇµÄÕýÏÒÊǽâÌâµÄ¹Ø¼ü£¬»¹ÒªÕÆÎÕÕÛÉ䶨Âɼ°ÕÛÉäÂÊÓë¹âËٵĹ«Ê½£®
| A£® | 6 sÄ©ÒÒ×·ÉÏ¼× | |
| B£® | ÔÚÒÒ×·Éϼ×֮ǰ£¬¼×¡¢ÒÒÏà¾à×îԶΪ10 m | |
| C£® | 8 sÄ©¼×¡¢ÒÒÁ½ÎïÌåÏàÓö£¬ÇÒÀë³ö·¢µãÓÐ32 m | |
| D£® | ÔÚ0¡«4 sÄÚÓë4¡«6 sÄÚ¼×µÄÆ½¾ùËÙ¶È´óСÏàµÈ |
| A£® | bµãµÄ³¡Ç¿Ò»¶¨ÎªÁã | |
| B£® | Q2´ø¸ºµçÇÒµçºÉÁ¿Ð¡ÓÚQ1 | |
| C£® | aµãµÄµçÊÆ±ÈbµãµÄµçÊÆ¸ß | |
| D£® | Á£×ÓÔÚaµãµÄµçÊÆÄܱÈbµãµÄµçÊÆÄÜС |
| A£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$-$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$£©x | B£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$-$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | ||
| C£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | D£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x |