ÌâÄ¿ÄÚÈÝ
19£®£¨1£©³µÏá¼õËÙ¹ý³ÌµÄ¼ÓËÙ¶È´óС£»
£¨2£©¼õËÙ¹ý³ÌСÇò¶ÔϸÏßµÄÀÁ¦´óС¼°¶Ô³µÏá±ÚµÄѹÁ¦´óС£®
·ÖÎö £¨1£©¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÇóµÃ³õËÙ¶È£¬ÓмÓËٶȵ͍ÒåʽÇóµÃ¼ÓËÙ¶È£»
£¨2£©¶ÔСÇòÊÜÁ¦·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÃ×÷ÓÃÁ¦£¬¹Ø¼üÊÇÅжÏСÇòÊÇ·ñÀ뿪³µÏá±Ú£»
½â´ð ½â£º£¨1£©³µÏá¼õËÙ¹ý³Ì£¬ÓÉx=$\frac{{v}_{0}+v}{2}t$½âµÃv0=20m/s
ÓÉ$a=\frac{{v}_{t}-{v}_{0}}{t}$½âµÃa=-5m/s2
£¨2£©ÉèСÇòÓë³µÏá±Ú¼·Ñ¹Á¦Ç¡ÎªÁãʱ¶ÔÓ¦µÄÁÙ½ç¼ÓËÙ¶ÈΪa0£¬´ËʱСÇòÊÜÖØÁ¦ºÍÉþ×ÓµÄÀÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖªmgtan¦È=ma0
tan$¦È=\frac{\sqrt{2}}{4}$£¬½âµÃ${a}_{0}=gtan¦È=\frac{5}{\sqrt{2}}m/{s}^{2}£¼5m/{s}^{2}$
¹ÊСÇòÒѾÀ뿪³µÏá±Ú£¬¼·Ñ¹Á¦FN=0
СÇòµÄÀÁ¦$F=m\sqrt{{a}^{2}+{g}^{2}}=5\sqrt{5}N$
¸ù¾ÝÅ£¶ÙµÚÈý¶¨ÂÉСÇò¶ÔϸÏßµÄÀÁ¦´óСΪ$F¡ä=5\sqrt{5}N$
´ð£º£¨1£©³µÏá¼õËÙ¹ý³ÌµÄ¼ÓËÙ¶È´óСΪ-5m/s2
£¨2£©¼õËÙ¹ý³ÌСÇò¶ÔϸÏßµÄÀÁ¦´óСΪ$5\sqrt{5}$N£¬¶Ô³µÏá±ÚµÄѹÁ¦´óСΪ0
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬×¥×¡ÊÜÁ¦·ÖÎö£¬ÅжϳöСÇòÊÇ·ñÀ뿪³µÏá±ÚÊǽâ¾ö£¨2£©µÄ¹Ø¼ü
| A£® | Îï¿éÈÔÔÈËÙÏ»¬ | |
| B£® | Îï¿é½«ÑØÐ±ÃæÔȼÓËÙÏ»¬ | |
| C£® | Îï¿é½«ÑØÐ±ÃæÔȼõËÙÏ»¬ | |
| D£® | Èô½«ÊúÖ±ÏòϵĺãÁ¦F³·È¥£¬»»³ÉÖØÎªFµÄÌú¿é¹Ì¶¨ÔÚÎï¿éÉÏ£¬ËüÃǽ«ÔÈËÙÏ»¬ |