ÌâÄ¿ÄÚÈÝ
5£®| A£® | Ïß¿òÖеç×èRÁ½¶ËµçѹµÄÓÐЧֵΪBS¦Ø | |
| B£® | Ïß¿òת¹ý$\frac{¦Ð}{6}$ʱ£¬Ïß¿òÖÐ˲ʱµçÁ÷µÄ´óСΪ$\frac{BS¦Ø}{2£¨R+r£©}$£¬·½ÏòΪadcba | |
| C£® | Ïß¿ò´ÓͼʾλÖÿªÊ¼Ê±×ª¹ý$\frac{¦Ð}{2}$µÄ¹ý³ÌÖУ¬Í¨¹ýµ¼Ïßijһºá½ØÃæµÄµçºÉÁ¿Îª$\frac{BS}{R+r}$ | |
| D£® | ÔÚÏß¿òת¹ýÒ»ÖܵĹý³ÌÖУ¬ÍâÁ¦¶ÔÆä×öµÄ¹¦Îª$\frac{¦Ð¦Ø{B}^{2}{S}^{2}}{R+r}$ |
·ÖÎö ÏÈд³ö½»Á÷µçµÄ±í´ïʽ£¬ÔÙ¸ù¾Ý·åÖµÓëÓÐЧֵµÄ¹ØÏµÅжϵçÁ÷ÓÐЧֵºÍСÇòÏûºÄµÄµç¹¦¼´ÎªÍâÁ¦Ëù×öµÄ¹¦
½â´ð ½â£ºA¡¢²úÉúµÄ¸ÐÓ¦µç¶¯ÊƵÄ×î´óֵΪEm=BS¦Ø£¬ÓÐЧֵΪ$E=\frac{BS¦Ø}{\sqrt{2}}$£¬¸ù¾Ý±ÕºÏµç·µÄÅ·Ä·¶¨ÂÉ¿ÉÖªU=$\frac{E}{R+r}R\\;=\frac{BS\\;¦ØR\\;}{\sqrt{2}£¨R+r£©}$=$\frac{BS¦ØR}{\sqrt{2}£¨R+r£©}$£¬¹ÊA´íÎó£»
B¡¢²úÉúµÄ¸ÐÓ¦µç¶¯ÊƵÄ˲ʱֵΪe=Emsin¦Øt=BS¦Øsin¦Øt£¬¹Ê²úÉúµÄ¸ÐÓ¦µçÁ÷µÄ˲ʱֵΪi=$\frac{BS¦Ø}{R+r}sin¦Øt$Ïß¿òת¹ý$\frac{¦Ð}{6}$ʱ²úÉúµÄµçÁ÷Ϊi=$\frac{BS¦Ø}{2£¨R+r£©}$£¬¸ù¾ÝÀã´Î¶¨ÂÉ¿ÉÖªµçÁ÷·½ÏòΪadcba£¬¹ÊBÕýÈ·£»
C¡¢²úÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊÆÎª$\overline{E}=\frac{BS}{¡÷t}$£¬²úÉúµÄ¸ÐÓ¦µçÁ÷Ϊ$\overline{I}=\frac{\overline{E}}{R+r}$£¬Á÷¹ýµÄµçºÉÁ¿Îªq=$\overline{I}•¡÷t=\frac{BS}{R+r}$£¬¹ÊCÕýÈ·£»
D¡¢×ª¶¯Ò»ÖܲúÉúµÄÈÈÁ¿ÎªQ=$\frac{{E}^{2}}{R+r}t$=$\frac{¦Ð¦Ø{B}^{2}{S}^{2}}{R+r}$£¬×öµÄ¹¦È«²¿×ª»¯ÎªÈÈÄÜ£¬¹ÊDÕýÈ·
¹ÊÑ¡£ºBCD
µãÆÀ Õýȷд³ö½»Á÷µç±í´ïʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬Ã÷È·¼ÆËãµç¹¦Âʼ°Çóµç±íµÄʾÊýµÈʱҪÓõ½µçÁ÷µÄÓÐЧֵ£®
| A£® | ºÏÔ˶¯µÄËÙ¶ÈÒ»¶¨±Èÿһ¸ö·ÖÔ˶¯µÄËÙ¶È´ó | |
| B£® | Á½¸ö·ÖÔ˶¯µÄʱ¼äÒ»¶¨ÓëËüÃǺÏÔ˶¯µÄʱ¼äÏàµÈ | |
| C£® | Ö»ÒªÁ½¸ö·ÖÔ˶¯ÊÇÖ±ÏßÔ˶¯£¬ºÏÔ˶¯Ò»¶¨ÊÇÖ±ÏßÔ˶¯ | |
| D£® | Á½¸öÔȱäËÙÖ±ÏßÔ˶¯µÄºÏÔ˶¯Ò»¶¨ÊÇÔȱäËÙÖ±ÏßÔ˶¯ |
| A£® | vÈô¼õС£¬ÏòÐÄÁ¦Ò²¼õС | |
| B£® | vµÄ×îСֵΪ$\sqrt{gL}$ | |
| C£® | µ±vÓÉ$\sqrt{gL}$Öð½¥Ôö´óʱ£¬¸Ë¶ÔÇòµÄµ¯Á¦Ò²Ôö´ó | |
| D£® | µ±vÓÉ$\sqrt{gL}$Öð½¥¼õСʱ£¬¸Ë¶ÔÇòµÄµ¯Á¦Ò²¼õС |