ÌâÄ¿ÄÚÈÝ
18£®£¨1£©Á£×Ó´©¹ý½çÃæMNʱƫÀëÖÐÐÄÏßRDµÄ¾àÀëy£»
£¨2£©µ½´ïPS½çÃæÊ±ÀëDµã¾àÀëY£»
£¨3£©ÔÈÇ¿´Å³¡´Å¸ÐӦǿ¶ÈµÄ´óСÓë·½Ïò£®
·ÖÎö £¨1£©Á£×ÓÔÚµç³¡ÇøÓò×öÀàËÆÆ½Å×Ô˶¯£¬¸ù¾ÝÀàÆ½Å×Ô˶¯µÄ·ÖÔ˶¯¹«Ê½ÁÐʽÇó½â²àÒÆÁ¿£»
£¨2£©´øµçÁ£×ÓÀ뿪µç³¡ºó×öÔÈËÙÖ±ÏßÔ˶¯£¬²ÉÓÃÔ˶¯µÄ·Ö½â·¨ÁÐʽ·ÖÎö£»
£¨3£©Á£×Ó´¹Ö±´òÔÚÓ«¹âÆÁÉÏ£¬½áºÏ¼¸ºÎ¹ØÏµµÃµ½¹ìµÀ°ë¾¶£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ·ÖÎö´Å¸ÐӦǿ¶ÈµÄ´óС£¬¸ù¾Ý×óÊÖ¶¨ÔòÅжϴŸÐӦǿ¶ÈµÄ·½Ïò£®
½â´ð ½â£º£¨1£©Á£×Ó´©¹ý½çÃæMNʱƫÀëÖÐÐÄÏßRDµÄ¾àÀ루²àÏòÎ»ÒÆ£©£º
$y=\frac{1}{2}a{t^2}$£¬
$a=\frac{qU}{md}$£¬
L=v0t£¬
´úÈëÊý¾ÝµÃ£º$y=\frac{qU}{2md}{£¨\frac{L}{v_0}£©^2}=\frac{{1{0^{-10}}C¡Á300V}}{{2¡Á1{0^{-20}}kg¡Á0.08m}}¡Á{£¨\frac{0.08m}{{2¡Á1{0^6}m/s}}£©^2}=0.03m=3cm$£»
£¨2£©´øµçÁ£×Óµ½´ïD´¦Ê±ÊúÖ±·ÖËÙ¶ÈΪ£º${v_y}=at=\frac{qU}{md}t=\frac{{1{0^{-10}}C¡Á300V}}{{1{0^{-20}}kg¡Á0.08m}}¡Á\frac{0.08m}{{2¡Á1{0^6}m/s}}=1.5¡Á1{0^6}m/s$£¬
·½ÏòÓëPSµÄ¼Ð½ÇΪ£º$tan¦Á=\frac{v_x}{v_y}=\frac{4}{3}$£¬
´øµçÁ£×ÓÀ뿪µç³¡ºó×öÔÈËÙÖ±ÏßÔ˶¯£¬Ë®Æ½·½ÏòΪ£º$t'=\frac{L}{v_0}$£¬
ÊúÖ±·½ÏòΪ£ºy'=vyt'=9cm£¬
¹ÊY=y+y'=12cm£»
£¨3£©´øµçÁ£×Óµ½´ïQʱËÙ¶ÈΪ£º$v=\sqrt{v_0^2+v_y^2}=2.5¡Á{10^6}m/s$£¬
Á£×Ó´¹Ö±´òÔÚÓ«¹âÆÁÉÏ£¬Óɼ¸ºÎ¹ØÏµ£¬Á£×ÓÔ²Ô˶¯µÄÔ²Ðļ´ÔÚfµã£¬²¢ÇóµÃ°ë¾¶Îª£º$r=\frac{Y}{sin¦Á}=\frac{12cm}{0.8}=15cm$=0.15m£»![]()
ÓÉ$qvB=m\frac{v^2}{r}$£¬µÃ´Å¸ÐӦǿ¶ÈΪ£º$B=\frac{mv}{qr}=\frac{1}{600}T$£¬·½Ïò´¹Ö±Ö½ÃæÏòÀ
´ð£º£¨1£©Á£×Ó´©¹ý½çÃæMNʱƫÀëÖÐÐÄÏßRDµÄ¾àÀëyΪ3cm£»
£¨2£©µ½´ïPS½çÃæÊ±ÀëDµã¾àÀëYΪ15cm£»
£¨3£©ÔÈÇ¿´Å³¡´Å¸ÐӦǿ¶ÈµÄ´óСΪ$\frac{1}{600}T$£¬·½Ïò´¹Ö±Ö½ÃæÏòÀ
µãÆÀ ±¾Ìâ¹Ø¼üÊÇ·ÖÀàËÆÆ½Å×Ô˶¯¡¢ÔÈËÙÖ±ÏßÔ˶¯ºÍÔÈËÙÔ²ÖÜÔ˶¯½øÐзÖÎö£¬¶ÔÓÚǰÁ½¸öÔ˶¯¹ý³Ì²ÉÓÃÕý½»·Ö½â·¨ÁÐʽ·ÖÎö£¬¶ÔÓÚÔÈËÙÔ²ÖÜÔ˶¯¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ·ÖÎö£¬²»ÄÑ£®
| A£® | ÍâÁ¦Ëù×öµÄ¹¦Îª$\sqrt{3}$mgL | B£® | ÍâÁ¦Ëù×öµÄ¹¦Îª$\sqrt{3}$qEL | ||
| C£® | ´øµçСÇòµÄÖØÁ¦ÊÆÄܼõСmgL | D£® | ´øµçСÇòµÄµçÊÆÄÜÔö¼Ó$\frac{1+\sqrt{3}}{2}$qEL |
| A£® | ÇòµÄËÙ¶ÈΪÁãʱ£¬µ¯»ÉÉ쳤$\frac{Eq}{k}$ | |
| B£® | Çò×ö¼òгÕñ¶¯£¬Õñ·ùΪ$\frac{2Eq}{k}$ | |
| C£® | Ô˶¯¹ý³ÌÖУ¬Ð¡ÇòµÄ»úеÄÜÊØºã | |
| D£® | Ô˶¯¹ý³ÌÖУ¬ÊǵçÊÆÄÜ¡¢¶¯Äܺ͵¯ÐÔÊÆÄÜÏ໥ת»¯ |
| A£® | µÈÓÚ 3.00¡Á108m/s | B£® | ´óÓÚ 3.00¡Á108m/s | ||
| C£® | СÓÚ 3.00¡Á108m/s | D£® | ÒÔÉÏÈýÖÖ¶¼ÓпÉÄÜ |