ÌâÄ¿ÄÚÈÝ

20£®ÈçͼËùʾ£¬Ò»¸ùÓÐÒ»¶¨µç×èµÄÖ±µ¼Ìå°ôÖÊÁ¿Îªm¡¢³¤ÎªL£¬ÆäÁ½¶Ë·ÅÔÚλÓÚË®Æ½ÃæÄÚ¼ä¾àҲΪLµÄ¹â»¬Æ½Ðе¼¹ìÉÏ£¬²¢ÓëÖ®½Ó´¥Á¼ºÃ£»°ô×ó²àÁ½µ¼¹ìÖ®¼äÁ¬½ÓÒ»¿É¿Øµç×裻µ¼¹ìÖÃÓÚÔÈÇ¿´Å³¡ÖУ¬´Å³¡µÄ´Å¸ÐӦǿ¶È´óСΪB£¬·½Ïò´¹Ö±ÓÚµ¼¹ìËùÔÚÆ½Ã森t=0ʱ¿Ì£¬¸øµ¼Ìå°ôÒ»¸öƽÐÐÓÚµ¼¹ìµÄ³õËÙ¶È£¬´Ëʱ¿É¿Øµç×èµÄ×èֵΪR0£®ÔÚ°ôÔ˶¯¹ý³ÌÖУ¬Í¨¹ý¿É¿Øµç×èµÄ±ä»¯Ê¹°ôÖеĵçÁ÷Ç¿¶È±£³Öºã¶¨£®²»¼Æµ¼¹ìµç×裬µ¼Ìå°ôÒ»Ö±Ôڴų¡ÖÐ
£¨1£©µ¼Ìå°ô×öʲôÔ˶¯£¿Çó¿É¿Øµç×èRËæÊ±¼ät±ä»¯µÄ¹ØÏµÊ½£»
£¨2£©ÈôÒÑÖª°ôÖеçÁ÷Ç¿¶ÈΪI£¬Çó0¡«tʱ¼äÄڿɿصç×èÉÏÏûºÄµÄƽ¾ù¹¦ÂÊP£»
£¨3£©ÈôÔÚ°ôµÄÕû¸öÔ˶¯¹ý³ÌÖн«ÌâÖеĿɿصç×è¸ÄΪ×èֵΪR0µÄ¶¨Öµµç×裬Ôò°ô½«¼õËÙÔ˶¯Î»ÒÆx1ºóͣϣ¬¶øÓÉÌâÖÐÌõ¼þ£¬°ô½«Ô˶¯Î»ÒÆx2ºóͣϣ¬Çó$\frac{{x}_{1}}{{x}_{2}}$µÄÖµ£®

·ÖÎö £¨1£©Ê¹°ôÖеĵçÁ÷Ç¿¶È±£³Öºã¶¨£¬½áºÏÅ·Ä·¶¨ÂÉÖªI=$\frac{E}{{R}_{0}+r}$Ϊ¶¨Öµ£¬ÓÉÓÚ°ô×öÔȼõËÙÔ˶¯£¬¹Ê¸ÐÓ¦µç¶¯ÊÆËæÊ±¼ä¼õС£¬Óɴ˵ĵ½RËæÊ±¼äµÄ±ä»¯¹ØÏµ£»
£¨2£©µç×èËæÊ±¼ä¾ùÔȼõС£¬¹Êµç×èµÄ¹¦ÂÊ¿ÉÓÃÆ½¾ù¹¦ÂʵÈЧ´úÌæ£¬P=I2•$\frac{R+{R}_{0}}{2}$£®
£¨3£©½«¿É¿Øµç×è¸ÄΪ¶¨Öµµç×èR0£¬°ô½«±ä¼õËÙÔ˶¯£®¸ù¾Ý·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨Âɺ͵çÁ¿¹«Ê½£¬Çó³öx1£®ÓÉÔȱäËÙÖ±ÏßÔ˶¯µÄ¹æÂÉÇó³öx2£¬¼´¿É½â´ð£®

½â´ð ½â£º£¨1£©Òò°ôÖеĵçÁ÷Ç¿¶È±£³Öºã¶¨£¬°ôËùÊܵݲÅàÁ¦Ò»¶¨£¬¹Ê°ô×öÔȼõËÙÖ±ÏßÔ˶¯£®           
Éè°ôµÄµç×èΪr£¬µçÁ÷ΪI£¬Æä³õËÙ¶ÈΪv0£¬¼ÓËÙ¶È´óСΪa£¬¾­Ê±¼ätºó£¬°ôµÄËٶȱäΪv£¬
ÔòÓУºv=v0-at                                
¶øa=$\frac{BIL}{m}$                                     
t=0ʱ¿Ì°ôÖеçÁ÷Ϊ£ºI=$\frac{BL{v}_{0}}{{R}_{0}+r}$                        
¾­Ê±¼ätºó°ôÖеçÁ÷Ϊ£ºI=$\frac{BLv}{R+r}$                       
ÓÉÒÔÉϸ÷ʽµÃ£ºR=R0-$\frac{{B}^{2}{L}^{2}}{m}t$                       
£¨2£©Òò¿É¿Øµç×èRËæÊ±¼ät¾ùÔȼõС£¬¹ÊËùÇó¹¦ÂÊΪ£ºP=I2•$\frac{R+{R}_{0}}{2}$            
ÓÉÒÔÉϸ÷ʽµÃ£ºP=I2£¨$\frac{{B}^{2}{L}^{2}t}{2m}$£©                            
£¨3£©½«¿É¿Øµç×è¸ÄΪ¶¨Öµµç×èR0£¬°ô½«±ä¼õËÙÔ˶¯£®
Ôòͨ¹ý½ðÊô°ôµÄµçºÉÁ¿ q=$\overline{I}$t¡ä
ÓÖ $\overline{I}$=$\frac{\overline{E}}{{R}_{0}+r}$£¬$\overline{E}$=BL$\overline{v}$
¶øx1=$\overline{v}$t¡ä
ÁªÁ¢µÃ q=$\frac{BL{x}_{1}}{{R}_{0}+r}$
¸ù¾Ý¶¯Á¿¶¨ÀíµÃ£º
-B$\overline{I}$Lt¡ä=0-mv0£»
¼´BLq=mv0£»
ÁªÁ¢¿ÉµÃ x1=$\frac{m{v}_{0}£¨R+r£©}{{B}^{2}{L}^{2}}$
¶øx2=$\frac{{v}^{2}}{2a}$
ÓÉÒÔÉϸ÷ʽµÃ x2=$\frac{m{v}_{0}£¨{R}_{0}+r£©}{2{B}^{2}{L}^{2}}$                    
Ôò$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2}{1}$
´ð£º
£¨1£©µ¼Ìå°ô×ö×öÔȼõËÙÖ±ÏßÔ˶¯£¬¿É¿Øµç×èRËæÊ±¼ät±ä»¯µÄ¹ØÏµÊ½Îª R=R0-$\frac{{B}^{2}{L}^{2}}{m}t$£»
£¨2£©ÈôÒÑÖª°ôÖеçÁ÷Ç¿¶ÈΪI£¬0¡«tʱ¼äÄڿɿصç×èÉÏÏûºÄµÄƽ¾ù¹¦ÂÊPΪI2£¨$\frac{{B}^{2}{L}^{2}t}{2m}$£©£»
£¨3£©$\frac{{x}_{1}}{{x}_{2}}$µÄֵΪ$\frac{2}{1}$£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ·ÖÎöµ¼Ìå°ôÊÜÁ¦Çé¿ö£¬Ó¦Óñպϵç·ŷķ¶¨ÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â£¬×¢Òâ¶ÔÓÚ·ÇÔȱäËÙÔ˶¯ÇóÎ»ÒÆ£¬ÒªÓÃÆ½¾ùËÙ¶ÈÓëʱ¼äÏà³Ë£¬ÊìÁ·ÍƵ¼³öµçºÉÁ¿ÓëÎ»ÒÆµÄ¹ØÏµÒÔ¼°¶¯Á¿¶¨Àí£¬´Ó¶øÇó½âÎ»ÒÆ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø