ÌâÄ¿ÄÚÈÝ
2£®Ò»°ë¾¶ÎªRµÄÇòÐÎÐÐÐÇÈÆÆä×ÔתÖáÔÈËÙת¶¯£¬ÈôÖÊÁ¿ÎªmµÄÎïÌåÔÚ¸ÃÐÇÇòÁ½¼«Ê±µÄÖØÁ¦ÎªG0£¬ÔÚ³àµÀÉϵÄÖØÁ¦Îª$\frac{{G}_{0}}{2}$£¬Ôò£¨¡¡¡¡£©| A£® | ¸ÃÐÇÇò×ÔתµÄ½ÇËÙ¶È´óСΪ$\sqrt{\frac{{G}_{0}}{2mR}}$ | |
| B£® | »·ÈƸÃÐÇÇò±íÃæ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎÀÐǵÄËÙÂÊΪ$\sqrt{\frac{{G}_{0}R}{2m}}$ | |
| C£® | »·ÈƸÃÐÇÇò±íÃæ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎÀÐǵÄËÙÂÊΪ$\sqrt{\frac{{G}_{0}R}{m}}$ | |
| D£® | ·ÅÖÃÓÚ´ËÐÇÇò±íÃæÎ³¶ÈΪ60¡ã´¦µÄÎïÌ壬ÏòÐļÓËÙ¶È´óСΪ$\frac{{G}_{0}}{4m}$ |
·ÖÎö ÔÚÁ½¼«£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÔÚ³àµÀ£¬ÍòÓÐÒýÁ¦µÄÒ»¸ö·ÖÁ¦µÈÓÚÖØÁ¦£¬ÁíÒ»¸ö·ÖÁ¦ÌṩÏòÐÄÁ¦£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÐÇÇò×ÔתµÄ½ÇËÙ¶È£®¸ù¾ÝÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦Çó³ö»·ÈÆÐÇÇò±íÃæ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎÀÐÇËÙÂÊ£®¸ù¾Ý¼¸ºÎ¹ØÏµÇó³öÔÚÐÇÇò±íÃæÎ³¶ÈΪ60¡ã´¦ÎïÌåת¶¯µÄ°ë¾¶£¬½áºÏÏòÐļÓËٶȹ«Ê½Çó³öÏòÐļÓËٶȵĴóС£®
½â´ð ½â£ºA¡¢ÔÚÁ½¼«£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÓУº$G\frac{Mm}{{R}^{2}}={G}_{0}$£¬ÔÚ³àµÀ£¬ÓУº$G\frac{Mm}{{R}^{2}}=\frac{{G}_{0}}{2}+mR{¦Ø}^{2}$£¬ÁªÁ¢Á½Ê½½âµÃ¦Ø=$\sqrt{\frac{{G}_{0}}{2mR}}$£¬¹ÊAÕýÈ·£®
BC¡¢¸ù¾Ý$G\frac{Mm}{{R}^{2}}=m\frac{{v}^{2}}{R}$µÃ£¬v=$\sqrt{\frac{GM}{R}}$£¬ÓÖ$G\frac{Mm}{{R}^{2}}={G}_{0}$£¬½âµÃv=$\sqrt{\frac{{G}_{0}{R}^{\;}}{m}}$£¬¹ÊB´íÎó£¬CÕýÈ·£®
D¡¢´¦ÓÚÐÇÇò±íÃæÎ³¶ÈΪ60¡ã´¦µÄÎïÌå£¬ÈÆµØÖáת¶¯µÄ°ë¾¶r=$Rcos60¡ã=\frac{1}{2}R$£¬ÔòÏòÐļÓËÙ¶Èa=$r{¦Ø}^{2}=\frac{1}{2}R•\frac{{G}_{0}}{2mR}=\frac{{G}_{0}}{4m}$£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºACD£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀÔÚÁ½¼«ºÍ³àµÀ´¦ÍòÓÐÒýÁ¦ºÍÖØÁ¦µÄ¹ØÏµ£¬ÕÆÎÕÍòÓÐÒýÁ¦¶¨ÂɵÄÁ½¸öÖØÒªÀíÂÛ£¬²¢ÄÜÁé»îÔËÓã¬ÄѶÈÖеȣ®
| A£® | Î»ÒÆ¡¢ËÙ¶È | B£® | Á¦¡¢¹¦ | C£® | ʱ¼ä¡¢¹¦ÂÊ | D£® | ¼ÓËÙ¶È¡¢¶¯ÄÜ |
| A£® | ½«»¬Æ¬PÉÏ»¬Ò»µã£¬Á£×Ó½«¿ÉÄÜ´Óϼ«°å±ßÔµÉä³ö | |
| B£® | ½«»¬Æ¬PÏ»¬Ò»µã£¬Á£×Ó½«¿ÉÄÜ´Óϼ«°å±ßÔµÉä³ö | |
| C£® | ½«a¼«°åÏÂÒÆÒ»µã£¬Á£×Ó½«¼ÌÐøÑØÖ±Ïß´©³ö | |
| D£® | Èç¹û½«¿ª¹Ø¶Ï¿ª£¬Á£×Ó½«¼ÌÐøÑØÖ±Ïß´©³ö |
| A£® | Ïàͬʱ¼äÄÚ·ÅÔÚAλÖÃʱ¹Û²ìµ½ÆÁÉϵÄÉÁ¹â´ÎÊý×î¶à | |
| B£® | Ïàͬʱ¼äÄÚ·ÅÔÚBλÖÃʱ¹Û²ìµ½ÆÁÉϵÄÉÁ¹â´ÎÊý±È·ÅÔÚAλÖÃʱÉٵöà | |
| C£® | ·ÅÔÚC¡¢DλÖÃʱÆÁÉϹ۲첻µ½ÉÁ¹â | |
| D£® | ·ÅÔÚDλÖÃʱÆÁÉÏÈÔÄܹ۲쵽һЩÉÁ¹â£¬µ«´ÎÊý¼«ÉÙ |