ÌâÄ¿ÄÚÈÝ
17£®ÈçͼËùʾ£¬ÔÚÖ±½Ç×ø±êϵxOyÖÐÓÐa¡¢b¡¢c¡¢dËĵ㣬ÒÑÖªoa=L£¬ob=od=2L£®oc=2$\sqrt{2}$L£®ÔÚµÚÒ»ÏóÏÞÖУ¬±ß½çOMºÍxÖáÖ®¼äÓг¡Ç¿ÎªE2µÄÔÈÇ¿´Å³¡£¬·½ÏòºÍ±ß½çOMƽÐУ»±ß½çOMºÍyÖáÖ®¼äÓдŸÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£¬·½ÏòºÍÖ½Ãæ´¹Ö±£¨±ß½çOMºÍxÖáÖ®¼äµÄ¼Ð½Ç¦È=45¡ã£©£¬µÚ¶þÏóÏÞÖУ¬Óз½ÏòÑØxÖáÕýÏòµÄÔÈÇ¿´Å³¡E1£®ÏÖÓÐÒ»µçºÉÁ¿Îª+q¡¢ÖÊÁ¿ÎªmµÄ´øµçÁ£×Ó£¨²»¼ÆÖØÁ¦£©£¬ÓÉaµãÒÔv0µÄ³õËÙ¶È£¨·½ÏòÑØyÖáÕýÏò£©ÉäÈëµç³¡£¬¾bµã½øÈë´Å³¡Æ«×ªºóÔÚcµã´¹Ö±OM½øÈëµç³¡E2£¬×îºó¾¹ýdµã£¬£¨E1¡¢E2ºÍB¾ùΪδ֪Á¿£©Ç󣺣¨1£©Á£×ÓÔÚbµãµÄËÙ¶È´óС£»
£¨2£©ÔÈÇ¿´Å³¡BµÄ´óСºÍ·½Ïò£»
£¨3£©µç³¡Ç¿¶ÈE2µÄ´óС£»
£¨4£©Á£×Ó´ÓaÔ˶¯µ½dµÄʱ¼ä£®
·ÖÎö £¨1£©Á£×ÓÔÚµÚ¶þÏóÏÞÄÚ×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½£¬×¥×¡µÈʱÐÔÇó³öÁ£×ÓÔÚbµãÑØxÖá·½ÏòÉϵķÖËÙ¶È£¬½áºÏƽÐÐËıßÐζ¨ÔòÇó³öbµãµÄËÙ¶È£®
£¨2£©×÷³öÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ì¼££¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó³öÁ£×Ó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶£¬½áºÏ°ë¾¶¹«Ê½Çó³ö´Å¸ÐӦǿ¶ÈµÄ´óС£¬Í¨¹ý×óÊÖ¶¨ÔòÅжϳö´Å³¡µÄ·½Ïò£®
£¨3£©Á£×ÓÔڵ糡E2ÖÐ×öÀàÆ½Å×Ô˶¯£¬½áºÏÀàÆ½Å×Ô˶¯µÄÑØµç³¡·½ÏòÉϵÄÎ»ÒÆºÍ´¹Ö±µç³¡·½ÏòÉϵÄÎ»ÒÆ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öµç³¡Ç¿¶ÈE2µÄ´óС£®
£¨4£©·Ö¶ÎÇó½âʱ¼ä£¬µÃµ½×Üʱ¼ä£®
½â´ð ½â£º£¨1£©Á£×ÓÔÚµÚ¶þÏóÏ޵ĵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬![]()
ÓУºv0t=2L£¬$\frac{{v}_{bx}}{2}$t=L£¬
ÁªÁ¢Á½Ê½½âµÃ vbx=v0
ËùÒÔbµãµÄËÙ¶È´óС vb=$\sqrt{{v}_{0}^{2}+{v}_{x}^{2}}$=$\sqrt{2}$v0£®
£¨2£©×ö¹ýbµãµÄËٶȵĴ¹Ïߣ¬ºÍbcµÄ´¹Ö±Æ½·ÖÏߣ¬È·¶¨Ô²ÐÄÈçͼ£¬¿ÉÖªÁ£×Ó´¹Ö±½øÈëµç³¡E2£¬Óɼ¸ºÎ¹ØÏµ¿ÉµÃÔ²¹ìµÀµÄ°ë¾¶ r=$\sqrt{2}$L
¸ù¾Ý qvbB=m$\frac{{v}_{b}^{2}}{r}$£¬½âµÃ B=$\frac{m{v}_{0}}{qL}$£¬·½Ïò´¹Ö±Ö½ÃæÏòÍ⣮
£¨3£©Á£×ÓÓÉcµã½øÈëµç³¡E2ºó×öÀàÆ½Å×Ô˶¯£¬ÉèËùÓÃʱ¼äΪt2£¬¼ÓËÙ¶ÈΪa2£¬ÔòÓÉÔ˶¯¹æÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉÓУº
$\sqrt{2}$L=$\sqrt{2}$v0t2£¬$\sqrt{2}$L=$\frac{1}{2}$a2t22£¬a2=$\frac{q{E}_{2}}{m}$
½âµÃ E2=$\frac{2\sqrt{2}m{v}_{0}^{2}}{qL}$£®
£¨4£©´Óaµ½bµÄÔ˶¯Ê±¼ä t=$\frac{2L}{{v}_{0}}$
´Óbµ½cµÄʱ¼ä t¡ä=$\frac{1}{4}T$=$\frac{1}{4}•\frac{2¦Ðr}{{v}_{b}}$=$\frac{¦ÐL}{{2v}_{0}}$
ÓɵÚ3ÌâÖª£ºt2=$\frac{L}{{v}_{0}}$
¹ÊÁ£×Ó´ÓaÔ˶¯µ½dµÄʱ¼ä t×Ü=t+t¡ä+t2=$\frac{£¨6+¦Ð£©L}{2{v}_{0}}$
´ð£º
£¨1£©Á£×ÓÔÚbµãµÄËÙ¶È´óСΪ $\sqrt{2}$v0£»
£¨2£©ÔÈÇ¿´Å³¡BµÄ´óСΪ $\frac{m{v}_{0}}{qL}$£¬·½Ïò´¹Ö±Ö½ÃæÏòÍ⣻
£¨3£©µç³¡Ç¿¶ÈE2µÄ´óСΪ$\frac{2\sqrt{2}m{v}_{0}^{2}}{qL}$£»
£¨4£©Á£×Ó´ÓaÔ˶¯µ½dµÄʱ¼äΪ$\frac{£¨6+¦Ð£©L}{2{v}_{0}}$£®
µãÆÀ Á£×Ó×öÀàÆ½Å×ʱ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓëÔ˶¯Ñ§¹«Ê½Ïà½áºÏÀ´×ÛºÏÔËÓã»ÔÚ×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£¬Óɰ뾶¹«Ê½Ó뼸ºÎ¹ØÏµÀ´ÇÉÃîÓ¦Ó㬴ӶøÅàÑøÑ§ÉúÔÚµçѧÓëÁ¦Ñ§×ۺϽâÌâµÄÄÜÁ¦£®
| A£® | Ö±ÏßÔ˶¯ | B£® | ÇúÏßÔ˶¯ | ||
| C£® | Éþ×ÓÉÕ¶Ï˲¼äµÄ¼ÓËÙ¶ÈΪ0 | D£® | ÂäµØÊ±µÄ¶¯ÄܵÈÓÚmgh |
| A£® | ËüÃǵÄÏßËÙ¶ÈÖ®±ÈΪv1£ºv2=$\sqrt{2}$£º1 | |
| B£® | ËüÃǵÄÔ˶¯ÖÜÆÚÖ®±ÈΪT1£ºT2=1£º$2\sqrt{2}$ | |
| C£® | ËüÃǵÄÏòÐļÓËÙ¶ÈÖ®±ÈΪa1£ºa2=4£º1 | |
| D£® | ËüÃǵÄÏòÐÄÁ¦Ö®±ÈΪF1£ºF2=4£º1 |
| A£® | ¾²µç¼ÆÉϵçÊÆ²îΪÁã | B£® | ·üÌØ¼ÆÉϵçÊÆ²îΪÁã | ||
| C£® | µçÈÝÆ÷C1Ëù´øµçÁ¿ÎªCE | D£® | µçÈÝÆ÷C2Ëù´øµçÁ¿ÎªCE |
| A£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄ°ë¾¶¶¼µÈÓÚR | |
| B£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄ¼ÓËÙ¶ÈÓëÈý¿ÅÐÇÇòµÄÖÊÁ¿ÎÞ¹Ø | |
| C£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT=2¦ÐR$\sqrt{\frac{R}{3Gm}}$ | |
| D£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄÏßËÙ¶Èv=$\sqrt{\frac{Gm}{R}}$ |