ÌâÄ¿ÄÚÈÝ
9£®| A£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄ°ë¾¶¶¼µÈÓÚR | |
| B£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄ¼ÓËÙ¶ÈÓëÈý¿ÅÐÇÇòµÄÖÊÁ¿ÎÞ¹Ø | |
| C£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT=2¦ÐR$\sqrt{\frac{R}{3Gm}}$ | |
| D£® | ÿ¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄÏßËÙ¶Èv=$\sqrt{\frac{Gm}{R}}$ |
·ÖÎö ÏÈд³öÈÎÒâÁ½¸öÐÇÐÇÖ®¼äµÄÍòÓÐÒýÁ¦£¬Çóÿһ¿ÅÐÇÐÇÊܵ½µÄºÏÁ¦£¬¸ÃºÏÁ¦ÌṩËüÃǵÄÏòÐÄÁ¦£®
È»ºóÓÃR±í´ï³öËüÃǵĹìµÀ°ë¾¶£¬×îºóд³öÓÃÖÜÆÚºÍÏßËٶȱí´ïµÄÏòÐÄÁ¦µÄ¹«Ê½£¬ÕûÀí¼´¿ÉµÄ³ö½á¹û£®
½â´ð ½â£ºA¡¢Óɼ¸ºÎ¹ØÏµÖª£ºÃ¿¿ÅÐÇÇò×öÔ²ÖÜÔ˶¯µÄ°ë¾¶£ºr=$\frac{\sqrt{3}}{3}$R£¬¹ÊA´íÎó£»
B¡¢ÈÎÒâÁ½¸öÐÇÐÇÖ®¼äµÄÍòÓÐÒýÁ¦F=$\frac{Gmm}{{R}^{2}}$£»
Ò»¿ÅÐÇÐÇÊܵ½µÄºÏÁ¦£¬F1=$\sqrt{3}$F£»
ºÏÁ¦ÌṩËüÃǵÄÏòÐÄÁ¦£º$\sqrt{3}$$\frac{Gmm}{{R}^{2}}$=ma£»
½âµÃ£ºa=$\frac{\sqrt{3}Gm}{{R}^{2}}$£»ÓëÈý¿ÅÐÇÇòµÄÖÊÁ¿m³ÉÕý±È£»¹ÊB´íÎó£»
C¡¢ºÏÁ¦ÌṩËüÃǵÄÏòÐÄÁ¦£º$\frac{\sqrt{3}Gmm}{{R}^{2}}$=m$\frac{4{¦Ð}^{2}}{{T}^{2}}r$£»¹ÊT=T=2¦ÐR$\sqrt{\frac{R}{3Gm}}$£»¹ÊCÕýÈ·£»
D¡¢ºÏÁ¦ÌṩËüÃǵÄÏòÐÄÁ¦£º$\sqrt{3}$$\frac{Gmm}{{R}^{2}}$=m$\frac{{v}^{2}}{r}$£»½âµÃ£ºv=$\sqrt{\frac{Gm}{R}}$£»¹ÊDÕýÈ·£»
±¾ÌâÑ¡´íÎóµÄ£¬¹ÊÑ¡£ºAB£®
µãÆÀ ½â¾ö¸ÃÌâÊ×ÏÈÒªÀí½âÄ£ÐÍËùÌṩµÄÇé¾°£¬È»ºóÄܹ»ÁгöºÏÁ¦ÌṩÏòÐÄÁ¦µÄ¹«Ê½£¬²ÅÄÜÕýÈ·½â´ðÌâÄ¿£®
| A£® | t1ʱ¿Ì N£¾G | B£® | t2ʱ¿Ì N£¾G | C£® | t3ʱ¿Ì N£¼G | D£® | t4ʱ¿Ì N=G |
| A£® | Îï¿éAÏà¶ÔÓÚС³µÈÔÈ»¾²Ö¹ | B£® | Îï¿éAÊܵ½µÄĦ²ÁÁ¦·½Ïò²»±ä | ||
| C£® | Îï¿éAÊܵ½µÄĦ²ÁÁ¦´óС²»±ä | D£® | Îï¿éAÊܵ½µ¯»ÉµÄÀÁ¦½«Ôö´ó |