ÌâÄ¿ÄÚÈÝ
5£®£¨1£©Îï¿éBÔÚdµãµÄËÙ¶È´óСv£»
£¨2£©A¡¢B·ÖÀë˲¼äAµÄËÙ¶ÈΪ¶àÉÙ£¿
£¨3£©Îï¿éAÄÜ»¬ÐеÄ×î´ó¾àÀës£®
·ÖÎö £¨1£©Îï¿éBÔÚdµãʱ£¬¸ù¾ÝÏòÐÄÁ¦¹«Ê½Áз½³Ì¿ÉÕýÈ·Çó½âËÙ¶Èv£»
£¨2£©Îï¿éB´Óbµ½dµÄ¹ý³Ì£¬Ö»ÓÐÖØÁ¦×ö¹¦£¬¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉÇó³öA¡¢B·ÖÀë˲¼äBµÄËÙ¶È£¬ÔÙÓɶ¯Á¿Êغ㶨ÂÉÇóµÃA¡¢B·ÖÀë˲¼äAµÄËÙ¶È£»
£¨3£©¸ù¾Ý¶¯Äܶ¨ÀíÇóÎï¿éAÄÜ»¬ÐеÄ×î´ó¾àÀës£®
½â´ð ½â£º£¨1£©BÔÚdµã£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºmBg-$\frac{3}{4}$mBg=mB$\frac{{v}^{2}}{R}$
½âµÃ£ºv=$\frac{\sqrt{gR}}{2}$=$\frac{\sqrt{10¡Á0.4}}{2}$=1m/s
£¨2£©B´Óbµ½d¹ý³Ì£¬Ö»ÓÐÖØÁ¦×ö¹¦£¬»úеÄÜÊØºã£®µÃ
$\frac{1}{2}{m}_{B}{v}_{B}^{2}$=mBgR+$\frac{1}{2}{m}_{B}{v}^{2}$
µÃ£ºvB=3m/s
AB·ÖÀë¹ý³Ì£¬È¡Ïò×óΪÕý·½Ïò£¬Óɶ¯Á¿Êغ㶨ÂÉÓУºmAvA-mBvB=0
µÃ£ºvA=0.5m/s
£¨3£©AÔȼõËÙÖ±ÏßÔ˶¯£¬Óɶ¯Äܶ¨ÀíµÃ£º
0-$\frac{1}{2}{m}_{A}{v}_{A}^{2}$=-¦ÌmAgs
ÁªÁ¢½âµÃ£ºs=0.125m
´ð£º
£¨1£©Îï¿éBÔÚdµãµÄËÙ¶È´óСvÊÇ1m/s£»
£¨2£©A¡¢B·ÖÀë˲¼äAµÄËÙ¶ÈΪ0.5m/s£®
£¨3£©Îï¿éAÄÜ»¬ÐеÄ×î´ó¾àÀësÊÇ0.125m£®
µãÆÀ ±¾ÌâÒªÀíÇåÎïÌåµÄÔ˶¯¹ý³Ì£¬°ÑÎÕÿ¸ö¹ý³ÌºÍ״̬µÄÎïÀí¹æÂÉ£¬Ã÷È·ÏòÐÄÁ¦µÄÀ´Ô´Êǹؼü£®
| A£® | 15.1m/s | B£® | 20.0m/s | C£® | 16.7m/s | D£® | 17.3m/s |
| A£® | a1=g1 | B£® | $\frac{{g}_{1}}{{g}_{2}}$=$\frac{{R}^{2}}{{r}^{2}}$ | C£® | $\frac{{v}_{1}}{{v}_{2}}$=$\frac{r}{R}$ | D£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{r}{R}$ |
| A£® | Ïß¿òabcd½øÈë´Å³¡Ç°Ô˶¯µÄ¼ÓËÙ¶ÈΪ $\frac{Mg-mgsin¦È}{m}$ | |
| B£® | Ïß¿òÔÚ½øÈë´Å³¡¹ý³ÌÖеÄÔ˶¯ËÙ¶Èv=$\frac{£¨Mg-mgsin¦È£©R}{{B}^{2}{{l}_{1}}^{2}}$ | |
| C£® | Ïß¿ò×öÔÈËÙÔ˶¯µÄʱ¼äΪ$\frac{{B}^{2}{{l}_{1}}^{2}{l}^{2}}{£¨Mg-mgsin¦È£©R}$ | |
| D£® | ¸Ã¹ý³Ì²úÉúµÄ½¹¶úÈÈQ=£¨Mg-mgsin ¦È£©l3 |
| A£® | ÎïÌåAÒ²×öÔÈËÙÖ±ÏßÔ˶¯ | |
| B£® | Éþ×ÓÀÁ¦Ê¼ÖÕ´óÓÚÎïÌåAËùÊܵÄÖØÁ¦ | |
| C£® | Éþ×Ó¶ÔAµÄÀÁ¦Öð½¥¼õС | |
| D£® | µØÃæ¶ÔÎïÌåBµÄÖ§³ÖÁ¦Öð½¥Ôö´ó |
| A£® | ËÙÂÊ | B£® | ËÙ¶È | C£® | ¼ÓËÙ¶È | D£® | ºÏÍâÁ¦ |
| A£® | ´¬ÎÞ·¨¶È¹ý´ËºÓ | B£® | ¶ÉºÓµÄ×î¶Ìʱ¼äΪ16s | ||
| C£® | ¶ÉºÓµÄÎ»ÒÆÔ½¶Ìʱ¼äÒ²Ô½¶Ì | D£® | ¶ÉºÓµÄ×îÐ¡Î»ÒÆÎª48m |