ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÇóÁ½Á£×Ó½øÈë´Å³¡µÄʱ¼ä¼ä¸ô¡÷t£»
£¨2£©ÇóÁ½Á£×ÓÔڴų¡±ß½çÉϵĴ©³öµãÖ®¼äµÄ¾àÀëd£®
·ÖÎö £¨1£©×÷³öÁ½Á£×ÓµÄÔ˶¯¹ì¼££¬Óɼ¸ºÎ¹ØÏµÇó³ö¹ì¼£¶ÔÓ¦µÄÔ²ÐĽǦȣ¬¸ù¾Ý¹«Ê½t=$\frac{¦È}{2¦Ð}$TÇó³öÁ½¸öÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£¬ÓÉ¡÷t=t1-t2Çó½â£®
£¨2£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö°ë¾¶£¬½áºÏ¼¸ºÎ֪ʶÇó³öd£®
½â´ð
½âÎö£º£¨1£©Á£×ÓÔ²ÖÜÔ˶¯µÄÖÜÆÚ T=$\frac{2¦Ðm}{qB}$
Á£×ÓaÔ²ÖÜÔ˶¯µÄÔ²ÐÄ½Ç ¦Á=$\frac{5¦Ð}{3}$ÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄʱ¼ä t1=$\frac{¦Á}{2¦Ð}$T£»
Á£×ÓbÔ²ÖÜÔ˶¯µÄÔ²ÐÄ½Ç ¦Â=$\frac{4¦Ð}{3}$£¬ÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄʱ¼ä t2=$\frac{¦Â}{2¦Ð}$T
ÒÑÖªÁ£×Óa¡¢bͬʱµ½´ï´Å³¡±ß½çµÄP¡¢QÁ½µã£¬ËùÒÔ¡÷t=t1-t2=$\frac{¦Ðm}{3qB}$
£¨2£©Á£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×÷ÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓÐ
qvB=m$\frac{{v}_{0}^{2}}{r}$£¬µÃ r=$\frac{m{v}_{0}}{qB}$
ÉèÁ£×Óa´Ó±ß½çÉϵÄCµãÀ뿪´Å³¡£¬ÔòAC=2 r1 sin¦È1
ÉèÁ£×Ób´Ó±ß½çÉϵÄDµãÀ뿪´Å³¡£¬ÔòAD=2r2 sin¦È2
¹Êd=AC+AD=2r1 sin30¡ã+2r2sin60¡ã=$\frac{4m{v}_{0}}{qB}$
´ð£º
£¨1£©Á½Á£×Ó½øÈë´Å³¡µÄʱ¼ä¼ä¸ô¡÷tΪ$\frac{¦Ðm}{3qB}$£»
£¨2£©Á½Á£×ÓÔڴų¡±ß½çÉϵĴ©³öµãÖ®¼äµÄ¾àÀëdΪ$\frac{4m{v}_{0}}{qB}$£®
µãÆÀ ±¾ÌâÊdz£¼ûµÄ´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÎÊÌ⣬»³ö¹ì¼££¬ÔËÓü¸ºÎ֪ʶÊÇ´¦Àí´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯ÎÊÌâµÄ»ù±¾·½·¨£®
| A£® | ¹ìµÀ1¡¢2¡¢3µÄÖÜÆÚÖ®±ÈΪ7$\sqrt{7}$£º8£º1 | |
| B£® | v2a£¾v1a£¾v2b£¾v3b | |
| C£® | v1a£¾v2a£¾v3b£¾v2b | |
| D£® | Ô²ÖܹìµÀ1ºÍ3ÉÏÔËÐÐʱ£¬ÎÀÐǺ͵ØÇòϵͳµÄ»úеÄÜÖ®±ÈΪ7£º1 |
| A£® | ²¨ÔÚ´«²¥¹ý³ÌÖУ¬ÖʵãµÄÕñ¶¯ÆµÂʵÈÓÚ²¨Ô´µÄÕñ¶¯ÆµÂÊ | |
| B£® | µ±Ä³ÁÐÉù²¨·¢Éú¶àÆÕÀÕЧӦʱ£¬ÏàÓ¦ÉùÔ´µÄÕñ¶¯ÆµÂÊÒ»¶¨·¢Éú±ä»¯ | |
| C£® | ÎïÌå×öÊÜÆÈÕñ¶¯Ê±£¬Çý¶¯Á¦ÆµÂÊÔ½¸ß£¬ÊÜÆÈÕñ¶¯µÄÎïÌåÕñ·ùÔ½´ó | |
| D£® | °®Òò˹̹ÏÁÒåÏà¶ÔÂÛÖ¸³ö£¬Õæ¿ÕÖеĹâËÙÔÚ²»Í¬µÄ¹ßÐԲο¼ÏµÖж¼ÊÇÏàͬµÄ | |
| E£® | XÉäÏߵįµÂʱÈÎÞÏߵ粨µÄƵÂÊ¸ß |
| A£® | N²»¶ÏÔö´ó£¬TÏȼõСºóÔö´ó | B£® | N²»¶ÏÔö´ó£¬T²»¶Ï¼õС | ||
| C£® | N²»±ä£¬T²»¶ÏÔö´ó | D£® | N²»±ä£¬TÏȼõСºóÔö´ó |
| A£® | ÊÍ·Å»¬¿éǰµ¯»ÉµÄµ¯ÐÔÊÆÄÜΪ¦Ìmg£¨L1+L2£©+mgL2tan¦È | |
| B£® | »¬¿éÓÉDµã»¬µ½Bµãʱ¶¯ÄÜΪ¦ÌmgL2+mgL2tan¦È | |
| C£® | ÔÚÁ½´ÎÔ˶¯¹ý³ÌÖл¬¿éÉÏÉýµÄ¸ß¶ÈÏàͬ | |
| D£® | ÔÚÁ½´ÎÔ˶¯¹ý³ÌÖл¬¿éµÄ»úеÄÜËðʧ¾ùΪ¦Ìmg£¨L1+$\frac{{L}_{2}}{cos¦È}$£© |
| A£® | ͨ¹ýL1µÄµçÁ÷´óСΪͨ¹ýL2µçÁ÷µÄ2±¶ | |
| B£® | L1ÏûºÄµÄµç¹¦ÂÊΪ0.75W | |
| C£® | L2ÏûºÄµÄµç¹¦ÂÊԼΪ0.19W | |
| D£® | L2µÄµç×èΪ6¦¸ |