搜索
设O是△ABC内部一点,且
OA
+
OC
=-2
OB
,则△AOB与△AOC的面积之比为( )
A、2:1
B、1:2
C、1:1
D、2:5
抛物线x
2
=-4y的焦点坐标为( )
A、(-16,0)
B、
(0,-
1
16
)
C、(0,-1)
D、(-1,0)
将下列各数按从大到小的顺序排列:log
8
9,log
7
9,log
1
2
3,log
1
2
2
9,
(
1
2
)
3
,
(
1
2
)
π
.
8、计算:[(-4)
3
]+log
5
25=
-62
.
6、函数y=log
a
|x+b|(a>0,a≠1,ab=1)的图象只可能是( )
A、
B、
C、
D、
5、函数y=f(x)的图象如图所示,则函数y=lgf(x)的图象大致是( )
A、
B、
C、
D、
通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.
某篮球职业联赛的总决赛在甲队与乙队间角逐,采用五局三胜制,即若一队先胜三场,则此队获胜,比赛结束,因两队实力相当,每场比赛获胜的可能性相等,据以往资料统计,第一场比赛组织者可获门票收入30万元,以后每场比赛门票收入都比上一场增加10万元,
问:(1)组织者在此次总决赛中获得门票收入不少于180万元的概率是多少?
(2)用ξ表示组织者在此次总决赛中的门票收入,求ξ的数学期望?
已知△ABC内接于半径为1的圆O,且满足3
OA
+4
OB
+5
OC
=
0
,则∠AOB=
,△ABC的面积S=
.
14、已知(1+2x)
4
=a
0
+a
1
x+a
2
x
2
+a
3
x
3
+a
4
x
4
,则a
1
-2a
2
+3a
3
-4a
4
=
-8
.
0
31600
31608
31614
31618
31624
31626
31630
31636
31638
31644
31650
31654
31656
31660
31666
31668
31674
31678
31680
31684
31686
31690
31692
31694
31695
31696
31698
31699
31700
31702
31704
31708
31710
31714
31716
31720
31726
31728
31734
31738
31740
31744
31750
31756
31758
31764
31768
31770
31776
31780
31786
31794
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案